ﻻ يوجد ملخص باللغة العربية
The $p$-rank of a Steiner triple system $B$ is the dimension of the linear span of the set of characteristic vectors of blocks of $B$, over GF$(p)$. We derive a formula for the number of different Steiner triple systems of order $v$ and given $2$-rank $r_2$, $r_2<v$, and a formula for the number of Steiner triple systems of order $v$ and given $3$-rank $r_3$, $r_3<v-1$. Also, we prove that there are no Steiner triple systems of $2$-rank smaller than $v$ and, at the same time, $3$-rank smaller than $v-1$. Our results extend previous work on enumerating Steiner triple systems according to the rank of their codes, mainly by Tonchev, V.A.Zinoviev and D.V.Zinoviev for the binary case and by Jungnickel and Tonchev for the ternary case.
In a recent work, Jungnickel, Magliveras, Tonchev, and Wassermann derived an overexponential lower bound on the number of nonisomorphic resolvable Steiner triple systems (STS) of order $v$, where $v=3^k$, and $3$-rank $v-k$. We develop an approach to
Let $X$ be a $v$-set, $B$ a set of 3-subsets (triples) of $X$, and $B^+cupB^-$ a partition of $B$ with $|B^-|=s$. The pair $(X,B)$ is called a simple signed Steiner triple system, denoted by ST$(v,s)$, if the number of occurrences of every 2-subset o
We prove several structural properties of Steiner triple systems (STS) of order 3w+3 that include one or more transversal subdesigns TD(3,w). Using an exhaustive search, we find that there are 2004720 isomorphism classes of STS(21) including a subdes
A Berge-$K_4$ in a triple system is a configuration with four vertices $v_1,v_2,v_3,v_4$ and six distinct triples ${e_{ij}: 1le i< j le 4}$ such that ${v_i,v_j}subset e_{ij}$ for every $1le i<jle 4$. We denote by $cal{B}$ the set of Berge-$K_4$ confi
The Heawood graph is the point-block incidence graph of the Fano plane (the unique Steiner triple system of order 7). We show that the minimum semidefinite rank of this graph is 10. That is, 10 is the smallest number of complex dimensions in which th