ﻻ يوجد ملخص باللغة العربية
Let $X$ be a $v$-set, $B$ a set of 3-subsets (triples) of $X$, and $B^+cupB^-$ a partition of $B$ with $|B^-|=s$. The pair $(X,B)$ is called a simple signed Steiner triple system, denoted by ST$(v,s)$, if the number of occurrences of every 2-subset of $X$ in triples $BinB^+$ is one more than the number of occurrences in triples $BinB^-$. In this paper we prove that $st(v,s)$ exists if and only if $vequiv1,3pmod6$, $v e7$, and $sin{0,1,...,s_v-6,s_v-4,s_v}$, where $s_v=v(v-1)(v-3)/12$ and for $v=7$, $sin{0,2,3,5,6,8,14}$.
The $p$-rank of a Steiner triple system $B$ is the dimension of the linear span of the set of characteristic vectors of blocks of $B$, over GF$(p)$. We derive a formula for the number of different Steiner triple systems of order $v$ and given $2$-ran
In a recent work, Jungnickel, Magliveras, Tonchev, and Wassermann derived an overexponential lower bound on the number of nonisomorphic resolvable Steiner triple systems (STS) of order $v$, where $v=3^k$, and $3$-rank $v-k$. We develop an approach to
We prove several structural properties of Steiner triple systems (STS) of order 3w+3 that include one or more transversal subdesigns TD(3,w). Using an exhaustive search, we find that there are 2004720 isomorphism classes of STS(21) including a subdes
The Heawood graph is the point-block incidence graph of the Fano plane (the unique Steiner triple system of order 7). We show that the minimum semidefinite rank of this graph is 10. That is, 10 is the smallest number of complex dimensions in which th
Given a $t$-$(v, k, lambda)$ design, $mathcal{D}=(X,mathcal{B})$, a zero-sum $n$-flow of $mathcal{D}$ is a map $f : mathcal{B}longrightarrow {pm1,ldots, pm(n-1)}$ such that for any point $xin X$, the sum of $f$ over all blocks incident with $x$ is ze