ترغب بنشر مسار تعليمي؟ اضغط هنا

On the existence of a simple yield stress fluid behavior

215   0   0.0 ( 0 )
 نشر من قبل Guillaume Ovarlez
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Guillaume Ovarlez




اسأل ChatGPT حول البحث

Materials such as foams, concentrated emulsions, dense suspensions or colloidal gels, are yield stress fluids. Their steady flow behavior, characterized by standard rheometric techniques, is usually modeled by a Herschel-Bulkley law. The emergence of techniques that allow the measurement of their local flow properties (velocity and volume fraction fields) has led to observe new complex behaviors. It was shown that many of these materials exhibit shear banding in a homogeneous shear stress field, which cannot be accounted for by the standard steady-state constitutive laws of simple yield stress fluids. In some cases, it was also observed that the velocity fields under various conditions cannot be modeled with a single constitutive law and that nonlocal models are needed to describe the flows. Doubt may then be cast on any macroscopic characterization of such systems, and one may wonder if any material behaves in some conditions as a Herschel-Bulkley material. In this paper, we address the question of the existence of a simple yield stress fluid behavior. We first review experimental results from the literature and we point out the main factors (physical properties, experimental procedure) at the origin of flow inhomogeneities and nonlocal effects. It leads us to propose a well-defined procedure to ensure that steady-state bulk properties of the materials are studied. We use this procedure to investigate yield stress fluid flows with MRI techniques. We focus on nonthixotropic dense suspensions of soft particles (foams, concentrated emulsions, Carbopol gels). We show that, as long as they are studied in a wide (as compared to the size of the material mesoscopic elements) gap geometry, these materials behave as simple yield stress fluids: they are homogeneous, they do not exhibit steady-state shear banding, and their steady flow behavior in simple shear can be modeled by a local continuous monotonic constitutive equation which accounts for flows in various conditions and matches the macroscopic response.



قيم البحث

اقرأ أيضاً

From MRI rheometry we show that a pure emulsion can be turned from a simple yield stress fluid to a thixotropic material by adding a small fraction of colloidal particles. The two fluids have the same behavior in the liquid regime but the loaded emul sion exhibits a critical shear rate below which no steady flows can be observed. For a stress below the yield stress, the pure emulsion abruptly stops flowing, whereas the viscosity of the loaded emulsion continuously increases in time, which leads to an apparent flow stoppage. This phenomenon can be very well represented by a model assuming a progressive increase of the number of droplet links via colloidal particles.
Soft glassy materials such as mayonnaise, wet clays, or dense microgels display under external shear a solid-to-liquid transition. Such a shear-induced transition is often associated with a non-monotonic stress response, in the form of a stress maxim um referred to as stress overshoot. This ubiquitous phenomenon is characterized by the coordinates of the maximum in terms of stress $sigma_text{M}$ and strain $gamma_text{M}$ that both increase as weak power laws of the applied shear rate. Here we rationalize such power-law scalings using a continuum model that predicts two different regimes in the limit of low and high applied shear rates. The corresponding exponents are directly linked to the steady-state rheology and are both associated with the nucleation and growth dynamics of a fluidized region. Our work offers a consistent framework for predicting the transient response of soft glassy materials upon start-up of shear from the local flow behavior to the global rheological observables.
132 - G. Picard , A. Ajdari , L. Bocquet 2002
Various experiments evidence spatial heterogeneities in sheared yield stress fluids. To account for heterogeneities in the velocity gradient direction, we use a simple model corresponding to a non-monotonous local constitutive curve and study a simpl e shear geometry. Different types of boundary conditions are considered. Under controlled macroscopic shear stress $Sigma$, we find homogeneous flow in the bulk and a hysteretic macroscopic stress - shear rate curve. Under controlled macroscopic shear rate $dot{Gamma}$, shear banding is predicted within a range of values of $dot{Gamma}$. For small shear rates, stick slip can also be observed. These qualitative behaviours are robust when changing the boundary conditions.
Normal stresses in complex fluids lead to new flow phenomena because they can be comparable to or even larger than the shear stress itself. In addition, they are of paramount importance for formulating and testing constitutive equations for predictin g non-viscometric flow behavior. Very little attention has so far been paid to the normal stresses of yield stress fluids, mainly because they are very difficult to measure. We report the first systematic study of the first and second normal stress differences, N1 (>0) and N2 (<0), in both continuous and oscillatory shear of three model yield stress fluids. We show that both normal stress differences are quadratic functions of the shear stress both above and below the shear yield stress, leading to the existence of a yield normal stress.
316 - Guillaume Ovarlez 2012
Stability of coarse particles against gravity is an important issue in dense suspensions (fresh concrete, foodstuff, etc.). On the one hand, it is known that they are stable at rest when the interstitial paste has a high enough yield stress; on the o ther hand, it is not yet possible to predict if a given material will remain homogeneous during a flow. Using MRI techniques, we study the time evolution of the particle volume fraction during the flows in a Couette geometry of model density-mismatched suspensions of noncolloidal particles in yield stress fluids. We observe that shear induces sedimentation of the particles in all systems, which are stable at rest. The sedimentation velocity is observed to increase with increasing shear rate and particle diameter, and to decrease with increasing yield stress of the interstitial fluid. At low shear rate (plastic regime), we show that this phenomenon can be modelled by considering that the interstitial fluid behaves like a viscous fluid -- of viscosity equal to the apparent viscosity of the sheared fluid -- in the direction orthogonal to shear. The behavior at higher shear rates, when viscous effects start to be important, is also discussed. We finally study the dependence of the sedimentation velocity on the particle volume fraction, and show that its modelling requires estimating the local shear rate in the interstitial fluid.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا