ﻻ يوجد ملخص باللغة العربية
The discovery of $Xi_{cc}^{++}$ by the LHCb Collaboration triggers predictions of more doubly charmed baryons. By taking into account both the $P$-wave excitations between the two charm quarks and the scattering of light pseudoscalar mesons off the ground state doubly charmed baryons, a set of negative-parity spin-1/2 doubly charmed baryons are predicted already from a unitarized version of leading order chiral perturbation theory. Moreover, employing heavy antiquark-diquark symmetry the relevant low-energy constants in the next-to-leading order are connected with those describing light pseudoscalar mesons scattering off charmed mesons, which have been well determined from lattice calculations and experimental data. Our calculations result in a spectrum richer than that of heavy mesons. We find two very narrow $J^P=1/2^-$ $Omega_{cc}^P$, which very likely decay into $Omega_{cc}pi^0$ breaking isospin symmetry. In the isospin-1/2 $Xi_{cc}^P$ sector, three states are predicted to exist below 4.2~GeV with the lowest one being narrow and the other two rather broad. We suggest to search for the $Xi_{cc}^{P}$ states in the $Xi_{cc}^{++}pi^-$ mode. Searching for them and their analogues are helpful to establish the hadron spectrum.
The chiral corrections to the magnetic moments of the spin-$frac{1}{2}$ doubly charmed baryons are systematically investigated up to next-to-next-to-leading order with heavy baryon chiral perturbation theory (HBChPT). The numerical results are calcul
The hadronic two-body weak decays of the doubly charmed baryons $Xi_{cc}^{++}, Xi_{cc}^+$ and $Omega_{cc}^+$ are studied in this work. To estimate the nonfactorizable contributions, we work in the pole model for the $P$-wave amplitudes and current al
We present the energy spectra of the low lying doubly-charmed baryons using lattice quantum chromodynamics. We precisely predict the ground state mass of the charmed-strange Omega(cc) (1/2+) baryon to be 3712(11)(12) MeV which could well be the next
Doubly Cabibbo-suppressed (DCS) nonleptonic weak decays of antitriplet charmed baryons are studied systematically in this work. The factorizable and nonfactorizable contributions can be classified explicitly in the topological-diagram approach and tr
Stimulated by the newly reported doubly-charmed tetraquark state $T_{cc}^+$ by LHCb, we carry out a systematic investigation of the $S$-wave interactions between the charmed meson ($D,,D^{*}$) in $H$-doublet and the charmed meson ($D_{1},,D_{2}^{*}$)