ﻻ يوجد ملخص باللغة العربية
We explore the whole parameter space of the singlet fermionic cold dark matter model with respect to constraints on, first, the relic density and second, gamma-ray lines up to 10 TeV. We investigate 44000 random sample models which comprehensively scan the parameter space for dark matter mass below 10 TeV, and compare our results with the latest experimental data from H.E.S.S., for the first time. It is showed that, except for the resonance regions, this indirect detection cannot exclude the parameter space of this model.
We consider the standard model (SM) extended by a gauge singlet fermion as cold dark matter (SFCDM) and a gauge singlet scalar (singlet Higgs) as a mediator. The parameter space of the SM is enlarged by seven new ones. We obtain the total annihilatio
We revisit the parameter space of singlet fermionic cold dark matter model in order to determine the role of the mixing angle between the standard model Higgs and new singlet one. Furthermore, we restudy the direct detection constraints with the upda
It is well known that for the pure standard model triplet fermionic WIMP-type dark matter (DM), the relic density is satisfied around 2 TeV. For such a heavy mass particle, the production cross-section at 13 TeV run of LHC will be very small. Extendi
In this paper, we explore the possibility of a linearly polarized gamma-ray signal from dark matter annihilations in the Galactic center. Considering neutral weakly interacting massive particles, a polarized gamma-ray signal can be realized by a two-
We consider an extension of the standard model in which a singlet fermionic particle, to serve as cold dark matter, and a singlet Higgs are added. We perform a reanalysis on the free parameters. In particular, demanding a correct relic abundance of d