ﻻ يوجد ملخص باللغة العربية
We revisit the parameter space of singlet fermionic cold dark matter model in order to determine the role of the mixing angle between the standard model Higgs and new singlet one. Furthermore, we restudy the direct detection constraints with the updated and new experimental data. As an important conclusion, this model is completely excluded by recent XENON100, PandaX II and LUX data.
We present a new class of direct detection signals; absorption of fermionic dark matter. We enumerate the operators through dimension six which lead to fermionic absorption, study their direct detection prospects, and summarize additional constraints
We explore the whole parameter space of the singlet fermionic cold dark matter model with respect to constraints on, first, the relic density and second, gamma-ray lines up to 10 TeV. We investigate 44000 random sample models which comprehensively sc
It is well known that for the pure standard model triplet fermionic WIMP-type dark matter (DM), the relic density is satisfied around 2 TeV. For such a heavy mass particle, the production cross-section at 13 TeV run of LHC will be very small. Extendi
We consider an extension of the standard model in which a singlet fermionic particle, to serve as cold dark matter, and a singlet Higgs are added. We perform a reanalysis on the free parameters. In particular, demanding a correct relic abundance of d
Weakly interacting massive particles (WIMPs) are one of the leading candidates for Dark Matter. So far we can use direct Dark Matter detection to estimate the mass of halo WIMPs only by fitting predicted recoil spectra to future experimental data. He