ﻻ يوجد ملخص باللغة العربية
The recent history of The On-Line Encyclopedia of Integer Sequences (or OEIS), describing developments since 2009, and discussing recent sequences involving interesting unsolved problems and in many cases spectacular illustrations. These include: Peaceable Queens, circles in the plane, the earliest cube-free binary sequence, the EKG and Yellowstone permutations, other lexicographically earliest sequences, iteration of number-theoretic functions, home primes and power trains, a memorable prime, a missing prime, Posts tag system, and coordination sequences.
We present a motivated exposition of the proof of the following Tverberg Theorem: For every integers $d,r$ any $(d+1)(r-1)+1$ points in $mathbb R^d$ can be decomposed into $r$ groups such that all the $r$ convex hulls of the groups have a common poin
We give a brief overview of the life and combinatorics of Jeff Remmel, a mathematician with successful careers in both logic and combinatorics.
Let $G$ be a finite cyclic group of order $n ge 2$. Every sequence $S$ over $G$ can be written in the form $S=(n_1g)cdot ... cdot (n_lg)$ where $gin G$ and $n_1,..., n_l in [1,ord(g)]$, and the index $ind (S)$ of $S$ is defined as the minimum of $(n_
Sequences of Genocchi numbers of the first and second kind are considered. For these numbers, an approach based on their representation using sequences of polynomials is developed. Based on this approach, for these numbers some identities generalizing the known identities are constructed.
In this paper, we discuss coin-weighing problems that use a 5-way scale which has five different possible outcomes: MUCH LESS, LESS, EQUAL, MORE, and MUCH MORE. The 5-way scale provides more information than the regular 3-way scale. We study the prob