ترغب بنشر مسار تعليمي؟ اضغط هنا

On some sequences of polynomials generating the Genocchi numbers

100   0   0.0 ( 0 )
 نشر من قبل Andrei Kirillovich Svinin
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Andrei K. Svinin




اسأل ChatGPT حول البحث

Sequences of Genocchi numbers of the first and second kind are considered. For these numbers, an approach based on their representation using sequences of polynomials is developed. Based on this approach, for these numbers some identities generalizing the known identities are constructed.



قيم البحث

اقرأ أيضاً

70 - Guo-Niu Han , Jing-Yi Liu 2017
The tangent number $T_{2n+1}$ is equal to the number of increasing labelled complete binary trees with $2n+1$ vertices. This combinatorial interpretation immediately proves that $T_{2n+1}$ is divisible by $2^n$. However, a stronger divisibility prope rty is known in the studies of Bernoulli and Genocchi numbers, namely, the divisibility of $(n+1)T_{2n+1}$ by $2^{2n}$. The traditional proofs of this fact need significant calculations. In the present paper, we provide a combinatorial proof of the latter divisibility by using the hook length formula for trees. Furthermore, our method is extended to $k$-ary trees, leading to a new generalization of the Genocchi numbers.
We study the generating function of descent numbers for the permutations with descent pairs of prescribed parities, the distribution of which turns out to be a refinement of median Genocchi numbers. We prove the $gamma$-positivity for the polynomial and derive the generating function for the $gamma$-vectors, expressed in the form of continued fraction. We also come up with an artificial statistic that gives a $q$-analogue of the $gamma$-positivity for the permutations with descents only allowed from an odd value to an odd value.
Graph polynomials are deemed useful if they give rise to algebraic characterizations of various graph properties, and their evaluations encode many other graph invariants. Algebraic: The complete graphs $K_n$ and the complete bipartite graphs $K_{n,n }$ can be characterized as those graphs whose matching polynomials satisfy a certain recurrence relations and are related to the Hermite and Laguerre polynomials. An encoded graph invariant: The absolute value of the chromatic polynomial $chi(G,X)$ of a graph $G$ evaluated at $-1$ counts the number of acyclic orientations of $G$. In this paper we prove a general theorem on graph families which are characterized by families of polynomials satisfying linear recurrence relations. This gives infinitely many instances similar to the characterization of $K_{n,n}$. We also show where to use, instead of the Hermite and Laguerre polynomials, linear recurrence relations where the coefficients do not depend on $n$. Finally, we discuss the distinctive power of graph polynomials in specific form.
116 - Qiongqiong Pan , Jiang Zeng 2021
Recently, Lazar and Wachs (arXiv:1910.07651) showed that the (median) Genocchi numbers play a fundamental role in the study of the homogenized Linial arrangement and obtained two new permutation models (called D-permutations and E-permutations) for ( median) Genocchi numbers. They further conjecture that the distributions of cycle numbers over the two models are equal. In a follow-up, Eu et al. (arXiv:2103.09130) further proved the gamma-positivity of the descent polynomials of even-odd descent permutations, which are in bijection with E-permutations by Foatas fundamental transformation. This paper merges the above two papers by considering a general moment sequence which encompasses the number of cycles and number of drops of E-permutations. Using the combinatorial theory of continued fraction, the moment connection enables us to confirm Lazar-Wachs conjecture and obtain a natural $(p,q)$-analogue of Eu et als descent polynomials. Furthermore, we show that the $gamma$-coefficients of our $(p,q)$-analogue of descent polynomials have the same factorization flavor as the $gamma$-coeffcients of Brandens $(p,q)$-Eulerian polynomials.
We study higher-dimensional interlacing Fibonacci sequences, generated via both Chebyshev type functions and $m$-dimensional recurrence relations. For each integer $m$, there exist both rational and integ
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا