The solar neighborhood contains disc stars that have recently crossed spiral arms in the Galaxy. We propose that boundaries in local velocity distributions separate stars that have recently crossed or been perturbed by a particular arm from those that havent. Ridges in the stellar velocity distributions constructed from the second Gaia data release trace orbits that could have touched nearby spiral arms at apocentre or pericentre. The multiple ridges and arcs seen in local velocity distributions are consistent with the presence of multiple spiral features and different pattern speeds and imply that the outer Galaxy is flocculent rather than grand design.
We present a new theoretical population synthesis model (the Galaxy Model) to examine and deal with large amounts of data from surveys of the Milky Way and to decipher the present and past structure and history of our own Galaxy. We assume the Galaxy
to consist of a superposition of many composite stellar populations belonging to the thin and thick disks, the stellar halo and the bulge, and to be surrounded by a single dark matter halo component. A global model for the Milky Ways gravitational potential is built up self-consistently with the density profiles from the Poisson equation. In turn, these density profiles are used to generate synthetic probability distribution functions (PDFs) for the distribution of stars in colour-magnitude diagrams (CMDs). Finally, the gravitational potential is used to constrain the stellar kinematics by means of the moment method on a (perturbed)-distribution function. Spiral arms perturb the axisymmetric disk distribution functions in the linear response framework of density-wave theory where we present an analytical formula of the so-called `reduction factor using Hypergeometric functions. Finally, we consider an analytical non-axisymmetric model of extinction and an algorithm based on the concept of probability distribution function to handle colour magnitude diagrams with a large number of stars. A genetic algorithm is presented to investigate both the photometric and kinematic parameter space. This galaxy model represents the natural framework to reconstruct the structure of the Milky Way from the heterogeneous data set of surveys such as Gaia-ESO, SEGUE, APOGEE2, RAVE and the Gaia mission.
We compare the stellar motion around a spiral arm created in two different scenarios, transient/co-rotating spiral arms and density-wave-like spiral arms. We generate Gaia mock data from snapshots of the simulations following these two scenarios usin
g our stellar population code, SNAPDRAGONS, which takes into account dust extinction and the expected Gaia errors. We compare the observed rotation velocity around a spiral arm similar in position to the Perseus arm, and find that there is a clear difference in the velocity features around the spiral arm between the co-rotating spiral arm and the density-wave-like spiral arm. Our result demonstrates that the volume and accuracy of the Gaia data are sufficient to clearly distinguish these two scenarios of the spiral arms.
In this paper we study the morphological properties of spiral galaxies, including measurements of spiral arm number and pitch angle. Using Galaxy Zoo 2, a stellar mass-complete sample of 6,222 SDSS spiral galaxies is selected. We use the machine visi
on algorithm SpArcFiRe to identify spiral arm features and measure their associated geometries. A support vector machine classifier is employed to identify reliable spiral features, with which we are able to estimate pitch angles for half of our sample. We use these machine measurements to calibrate visual estimates of arm tightness, and hence estimate pitch angles for our entire sample. The properties of spiral arms are compared with respect to various galaxy properties. The star formation properties of galaxies vary significantly with arm number, but not pitch angle. We find that galaxies hosting strong bars have spiral arms substantially ($4-6^mathrm{o}$) looser than unbarred galaxies. Accounting for this, spiral arms associated with many-arm structures are looser (by 2$^mathrm{o}$) than those in two-arm galaxies. In contrast to this average trend, galaxies with greater bulge-to-total stellar mass ratios display both fewer and looser spiral arms. This effect is primarily driven by the galaxy disc, such that galaxies with more massive discs contain more spiral arms with tighter pitch angles. This implies that galaxy central mass concentration is not the dominant cause of pitch angle and arm number variations between galaxies, which in turn suggests that not all spiral arms are governed by classical density waves or modal theories.
Using a numerical simulation of an isolated barred disc galaxy, we first demonstrate that the resonances of the inner bar structure induce more prominent features in the action space distribution for the kinematically hotter stars, which are less sen
sitive to the local perturbation, such as the transient spiral arms. Then, we analyse the action distribution for the kinematically hotter stars selected from the Gaia EDR3 data as the stars with higher values of radial and vertical actions. We find several resonance features, including two new features, in the angular momentum distribution similar to what are seen in our numerical simulations. We show that the bar pattern speeds of about $Omega_{rm bar}sim34$~km~s$^{-1}$~kpc$^{-1}$ and 42~km~s$^{-1}$~kpc$^{-1}$ explain all these features equally well. The resonance features we find correspond to the inner 4:1, co-rotation, outer 4:1, outer Lindblad and outer 4:3 (co-rotation, outer 4:1, outer Lindblad, outer 4:3 and outer 1:1) resonances, when $Omega_{rm bar}sim34$ (42) km~s$^{-1}$~kpc$^{-1}$ is assumed.
Fragmentation of a spiral arm is thought to drive the formation of giant clumps in galaxies. Using linear perturbation analysis for self-gravitating spiral arms, we derive an instability parameter and define the conditions for clump formation. We ext
end our analysis to multi-component systems that consist of gas and stars in an external potential. We then perform numerical simulations of isolated disc galaxies with isothermal gas, and compare the results with the prediction of our analytic model. Our model describes accurately the evolution of the spiral arms in our simulations, even when spiral arms dynamically interact with one another. We show that most of the giant clumps formed in the simulated disc galaxies satisfy the instability condition. The clump masses predicted by our model are in agreement with the simulation results, but the growth time-scale of unstable perturbations is overestimated by a factor of a few. We also apply our instability analysis to derive scaling relations of clump properties. The expected scaling relation between the clump size, velocity dispersion, and circular velocity is slightly different from that given by the Toomre instability analysis, but neither is inconsistent with currently available observations. We argue that the spiral-arm instability is a viable formation mechanism of giant clumps in gas-rich disc galaxies.
Alice C. Quillen
,Ismael Carrillo
,Friedrich Anders
.
(2018)
.
"Spiral arm crossings inferred from ridges in Gaia stellar velocity distributions"
.
Alice C. Quillen
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا