ﻻ يوجد ملخص باللغة العربية
Using a numerical simulation of an isolated barred disc galaxy, we first demonstrate that the resonances of the inner bar structure induce more prominent features in the action space distribution for the kinematically hotter stars, which are less sensitive to the local perturbation, such as the transient spiral arms. Then, we analyse the action distribution for the kinematically hotter stars selected from the Gaia EDR3 data as the stars with higher values of radial and vertical actions. We find several resonance features, including two new features, in the angular momentum distribution similar to what are seen in our numerical simulations. We show that the bar pattern speeds of about $Omega_{rm bar}sim34$~km~s$^{-1}$~kpc$^{-1}$ and 42~km~s$^{-1}$~kpc$^{-1}$ explain all these features equally well. The resonance features we find correspond to the inner 4:1, co-rotation, outer 4:1, outer Lindblad and outer 4:3 (co-rotation, outer 4:1, outer Lindblad, outer 4:3 and outer 1:1) resonances, when $Omega_{rm bar}sim34$ (42) km~s$^{-1}$~kpc$^{-1}$ is assumed.
Using the astrometry and integrated photometry from the Gaia Early Data Release 3 (EDR3), we map the density variations in the distribution of young Upper Main Sequence (UMS) stars, open clusters and classical Cepheids in the Galactic disk within sev
Classical double-mode pulsators (RR Lyrae stars and delta Cepheids) are important for their simultaneous pulsation in low-order radial modes. This enables us to put stringent constraints on their physical parameters. We use 30 bright galactic doubl
We investigate the frequency of occurrence of Galactic carbon stars as a function of progenitor mass using Gaia data. Small number statistics limit fidelity, but C star frequency agrees with that observed in the Magellanic Clouds (MCs) down to $m app
The early third data release (EDR3) of the European Space Agency satellite Gaia provides coordinates, parallaxes, and proper motions for ~1.47 billion sources in our Milky Way, based on 34 months of observations. The combination of Gaia DR2 radial ve
The second data release of it Gaia rm revealed a parallax zero point offset of $-0.029$~mas based on quasars. The value depended on the position on the sky, and also likely on magnitude and colour. The offset and its dependence on other parameters in