ترغب بنشر مسار تعليمي؟ اضغط هنا

Causal dynamics of discrete manifolds

100   0   0.0 ( 0 )
 نشر من قبل Stefano Facchini
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend Cellular Automata to time-varying discrete geometries. In other words we formalize, and prove theorems about, the intuitive idea of a discrete manifold which evolves in time, subject to two natural constraints: the evolution does not propagate information too fast; and it acts everywhere the same. For this purpose we develop a correspondence between complexes and labeled graphs. In particular we reformulate the properties that characterize discrete manifolds amongst complexes, solely in terms of graphs. In dimensions $n<4$, over bounded-star graphs, it is decidable whether a Cellular Automaton maps discrete manifolds into discrete manifolds.



قيم البحث

اقرأ أيضاً

A Dubins path is a shortest path with bounded curvature. The seminal result in non-holonomic motion planning is that (in the absence of obstacles) a Dubins path consists either from a circular arc followed by a segment followed by another arc, or fro m three circular arcs [Dubins, 1957]. Dubins original proof uses advanced calculus; later, Dubins result was reproved using control theory techniques [Reeds and Shepp, 1990], [Sussmann and Tang, 1991], [Boissonnat, Cerezo, and Leblond, 1994]. We introduce and study a discrete analogue of curvature-constrained motion. We show that shortest bounded-curvature polygonal paths have the same structure as Dubins paths. The properties of Dubins paths follow from our results as a limiting case---this gives a new, discrete proof of Dubins result.
88 - Leonardo De Carlo 2019
This work is thought as an operative guide to discrete exterior calculus (DEC), but at the same time with a rigorous exposition. We present a version of (DEC) on cubic cell, defining it for discrete manifolds. An example of how it works, it is done o n the discrete torus, where usual Gauss and Stokes theorems are recovered.
A drawing of a graph in the plane is a thrackle if every pair of edges intersects exactly once, either at a common vertex or at a proper crossing. Conways conjecture states that a thrackle has at most as many edges as vertices. In this paper, we inve stigate the edge-vertex ratio of maximal thrackles, that is, thrackles in which no edge between already existing vertices can be inserted such that the resulting drawing remains a thrackle. For maximal geometric and topological thrackles, we show that the edge-vertex ratio can be arbitrarily small. When forbidding isolated vertices, the edge-vertex ratio of maximal geometric thrackles can be arbitrarily close to the natural lower bound of 1/2. For maximal topological thrackles without isolated vertices, we present an infinite family with an edge-vertex ratio of 5/6.
We obtain improved upper bounds and new lower bounds on the chromatic number as a linear function of the clique number, for the intersection graphs (and their complements) of finite families of translates and homothets of a convex body in $RR^n$.
Let C be a simple, closed, directed curve on the surface of a convex polyhedron P. We identify several classes of curves C that live on a cone, in the sense that C and a neighborhood to one side may be isometrically embedded on the surface of a cone Lambda, with the apex a of Lambda enclosed inside (the image of) C; we also prove that each point of C is visible to a. In particular, we obtain that these curves have non-self-intersecting developments in the plane. Moreover, the curves we identify that live on cones to both sides support a new type of source unfolding of the entire surface of P to one non-overlapping piece, as reported in a companion paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا