ترغب بنشر مسار تعليمي؟ اضغط هنا

Discrete Dubins Paths

166   0   0.0 ( 0 )
 نشر من قبل Sylvester Eriksson-Bique
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A Dubins path is a shortest path with bounded curvature. The seminal result in non-holonomic motion planning is that (in the absence of obstacles) a Dubins path consists either from a circular arc followed by a segment followed by another arc, or from three circular arcs [Dubins, 1957]. Dubins original proof uses advanced calculus; later, Dubins result was reproved using control theory techniques [Reeds and Shepp, 1990], [Sussmann and Tang, 1991], [Boissonnat, Cerezo, and Leblond, 1994]. We introduce and study a discrete analogue of curvature-constrained motion. We show that shortest bounded-curvature polygonal paths have the same structure as Dubins paths. The properties of Dubins paths follow from our results as a limiting case---this gives a new, discrete proof of Dubins result.



قيم البحث

اقرأ أيضاً

We extend Cellular Automata to time-varying discrete geometries. In other words we formalize, and prove theorems about, the intuitive idea of a discrete manifold which evolves in time, subject to two natural constraints: the evolution does not propag ate information too fast; and it acts everywhere the same. For this purpose we develop a correspondence between complexes and labeled graphs. In particular we reformulate the properties that characterize discrete manifolds amongst complexes, solely in terms of graphs. In dimensions $n<4$, over bounded-star graphs, it is decidable whether a Cellular Automaton maps discrete manifolds into discrete manifolds.
96 - Haitao Wang , Yiming Zhao 2020
Let $P$ be a path graph of $n$ vertices embedded in a metric space. We consider the problem of adding a new edge to $P$ so that the radius of the resulting graph is minimized, where any center is constrained to be one of the vertices of $P$. Previous ly, the continuous version of the problem where a center may be a point in the interior of an edge of the graph was studied and a linear-time algorithm was known. Our discrete version of the problem has not been studied before. We present a linear-time algorithm for the problem.
We consider the NP-complete problem of tracking paths in a graph, first introduced by Banik et. al. [3]. Given an undirected graph with a source $s$ and a destination $t$, find the smallest subset of vertices whose intersection with any $s-t$ path re sults in a unique sequence. In this paper, we show that this problem remains NP-complete when the graph is planar and we give a 4-approximation algorithm in this setting. We also show, via Courcelles theorem, that it can be solved in linear time for graphs of bounded-clique width, when its clique decomposition is given in advance.
In 1903, noted puzzle-maker Henry Dudeney published The Spider and the Fly puzzle, which asks for the shortest path along the surfaces of a square prism between two points (source and target) located on the square faces, and surprisingly showed that the shortest path traverses five faces. Dudeneys source and target points had very symmetrical locations; in this article, we allow the source and target points to be anywhere in the interior of opposite faces, but now require the square prism to be a cube. In this context, we find that, depending on source and target locations, a shortest path can traverse either three or four faces, and we investigate the conditions that lead to four-face solutions and estimate the probability of getting a four-face shortest path. We utilize a combination of numerical calculations, elementary geometry, and transformations we call corner moves of cube unfolding diagrams,
Let $p(m)$ (respectively, $q(m)$) be the maximum number $k$ such that any tree with $m$ edges can be transformed by contracting edges (respectively, by removing vertices) into a caterpillar with $k$ edges. We derive closed-form expressions for $p(m)$ and $q(m)$ for all $m ge 1$. The two functions $p(n)$ and $q(n)$ can also be interpreted in terms of alternating paths among $n$ disjoint line segments in the plane, whose $2n$ endpoints are in convex position.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا