ﻻ يوجد ملخص باللغة العربية
Techniques to classify galaxies solely based on photometry will be necessary for future large cosmology missions, such as Euclid or LSST. However, the precision of classification is always lower in photometric surveys and can be systematically biased with respect to classifications based upon spectroscopic data. We verified how precisely the detailed classification scheme introduced by Siudek et al. (2018, hereafter: S1) for galaxies at z~0.7 could be reproduced if only photometric data are available. We applied the Fisher Expectation-Maximization (FEM) unsupervised clustering algorithm to 54,293 VIPERS galaxies working in a parameter space of reliable photometric redshifts and 12 corresponding rest-frame magnitudes. The FEM algorithm distinguishes four main groups: (1) red, (2) green, (3) blue, and (4) outliers. Each group is further divided into 3, 3, 4, and 2 subclasses, respectively. The accuracy of reproducing galaxy classes using spectroscopic data is high: 92%, 84%, 96% for red, green, and blue classes, respectively, except for dusty star-forming galaxies. The presented verification of the photometric classification demonstrates that large photometric samples can be used to distinguish different galaxy classes at z > 0.5 with an accuracy provided so far only by spectroscopic data except for particular galaxy classes.
We present the full public data release (PDR-2) of the VIMOS Public Extragalactic Redshift Survey (VIPERS), performed at the ESO VLT. We release redshifts, spectra, CFHTLS magnitudes and ancillary information (as masks and weights) for a complete sam
Aims. We present a method, named photo-type, to identify and accurately classify L and T dwarfs onto the standard spectral classification system using photometry alone. This enables the creation of large and deep homogeneous samples of these objects
Using an unconventional single line diagnostic that unambiguously identifies AGNs in composite galaxies we report statistical differences in the properties (stellar age, [OII] luminosity, colour) between active and inactive galaxies at 0.62<z<1.2 ext
The VIPERS galaxy survey has measured the clustering of $0.5<z<1.2$ galaxies, enabling a number of measurements of galaxy properties and cosmological redshift-space distortions (RSD). Because the measurements were made using one-pass of the VIMOS ins
We explore the evolution of the statistical distribution of galaxy morphological properties and colours over the redshift range $0.5<z<1$, combining high-quality imaging data from the CFHT Legacy Survey with the large number of redshifts and extended