ﻻ يوجد ملخص باللغة العربية
Aims. We present a method, named photo-type, to identify and accurately classify L and T dwarfs onto the standard spectral classification system using photometry alone. This enables the creation of large and deep homogeneous samples of these objects efficiently, without the need for spectroscopy. Methods. We created a catalogue of point sources with photometry in 8 bands, ranging from 0.75 to 4.6 microns, selected from an area of 3344 deg^2, by combining SDSS, UKIDSS LAS, and WISE data. Sources with 13.0 < J < 17.5, and Y - J > 0.8, were then classified by comparison against template colours of quasars, stars, and brown dwarfs. The L and T templates, spectral types L0 to T8, were created by identifying previously known sources with spectroscopic classifications, and fitting polynomial relations between colour and spectral type. Results. Of the 192 known L and T dwarfs with reliable photometry in the surveyed area and magnitude range, 189 are recovered by our selection and classification method. We have quantified the accuracy of the classification method both externally, with spectroscopy, and internally, by creating synthetic catalogues and accounting for the uncertainties. We find that, brighter than J = 17.5, photo-type classifications are accurate to one spectral sub-type, and are therefore competitive with spectroscopic classifications. The resultant catalogue of 1157 L and T dwarfs will be presented in a companion paper.
We have developed a method photo-type to identify and accurately classify L and T dwarfs, onto the standard system, from photometry alone. We combine SDSS, UKIDSS and WISE data and classify point sources by comparing the izYJHKW1W2 colours against te
Techniques to classify galaxies solely based on photometry will be necessary for future large cosmology missions, such as Euclid or LSST. However, the precision of classification is always lower in photometric surveys and can be systematically biased
We present a homogeneous sample of 1361 L and T dwarfs brighter than J = 17.5 (of which 998 are new), from an effective area of 3070 deg2, classified by the photo-type method to an accuracy of one spectral sub-type using izYJHKW1W2 photometry from SD
The cloud formation process starts with the formation of seed particles, after which, surface chemical reactions grow or erode the cloud particles. We investigate which materials may form cloud condensation seeds in the gas temperature and pressure r
In recent years there have been many attempts to characterize the occurrence of stellar, BD and planetary-mass companions to solar-type stars, with the aim of constraining formation mechanisms. From RV observations a dearth of companions with masses