ﻻ يوجد ملخص باللغة العربية
We employ a variational Monte Carlo approach to efficiently obtain the dynamical structure factor for the spin-1/2 $J_1-J_2$ Heisenberg model on the square lattice. Upon increasing the frustrating ratio $J_2/J_1$, the ground state undergoes a continuous transition from a Neel antiferromagnet to a $mathbb{Z}_{2}$ gapless spin liquid. We identify the characteristic spectral features in both phases and highlight the existence of a broad continuum of excitations in the proximity of the spin-liquid phase. The magnon branch, which dominates the spectrum of the unfrustrated Heisenberg model, gradually loses its spectral weight, thus releasing nearly-deconfined spinons, whose signatures are visible even in the magnetically ordered state. Our results show how free spinons emerge across a quantum critical point, providing evidence for the fractionalization of magnons into deconfined spinons.
We consider Dirac electrons on the honeycomb lattice Kondo coupled to spin-1/2 degrees of freedom on the kagome lattice. The interactions between the spins are chosen along the lines of the Balents-Fisher-Girvin model that is known to host a $mathbb{
We propose a two-dimensional time-reversal invariant system of essentially non-interacting electrons on a square lattice that exhibits configurations with fractional charges e/2. These are vortex-like topological defects in the dimerization order par
Based on the mapping between $s=1/2$ spin operators and hard-core bosons, we extend the cluster perturbation theory to spin systems and study the whole excitation spectrum of the antiferromagnetic $J_{1}$-$J_{2}$ Heisenberg model on the square lattic
We study the field dependence of the antiferromagnetic spin-1/2 Heisenberg model on the square lattice by means of exact diagonalizations. In a first part, we calculate the spin-wave velocity, the spin-stiffness, and the magnetic susceptibility and t
We investigate the role of a transverse field on the Ising square antiferromagnet with first-($J_1$) and second-($J_2$) neighbor interactions. Using a cluster mean-field approach, we provide a telltale characterization of the frustration effects on t