ترغب بنشر مسار تعليمي؟ اضغط هنا

A Brand-level Ranking System with the Customized Attention-GRU Model

74   0   0.0 ( 0 )
 نشر من قبل Yu Zhu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In e-commerce websites like Taobao, brand is playing a more important role in influencing users decision of click/purchase, partly because users are now attaching more importance to the quality of products and brand is an indicator of quality. However, existing ranking systems are not specifically designed to satisfy this kind of demand. Some design tricks may partially alleviate this problem, but still cannot provide satisfactory results or may create additional interaction cost. In this paper, we design the first brand-level ranking system to address this problem. The key challenge of this system is how to sufficiently exploit users rich behavior in e-commerce websites to rank the brands. In our solution, we firstly conduct the feature engineering specifically tailored for the personalized brand ranking problem and then rank the brands by an adapted Attention-GRU model containing three important modifications. Note that our proposed modifications can also apply to many other machine learning models on various tasks. We conduct a series of experiments to evaluate the effectiveness of our proposed ranking model and test the response to the brand-level ranking system from real users on a large-scale e-commerce platform, i.e. Taobao.



قيم البحث

اقرأ أيضاً

This work proposes a novel adaptation of a pretrained sequence-to-sequence model to the task of document ranking. Our approach is fundamentally different from a commonly-adopted classification-based formulation of ranking, based on encoder-only pretr ained transformer architectures such as BERT. We show how a sequence-to-sequence model can be trained to generate relevance labels as target words, and how the underlying logits of these target words can be interpreted as relevance probabilities for ranking. On the popular MS MARCO passage ranking task, experimental results show that our approach is at least on par with previous classification-based models and can surpass them with larger, more-recent models. On the test collection from the TREC 2004 Robust Track, we demonstrate a zero-shot transfer-based approach that outperforms previous state-of-the-art models requiring in-dataset cross-validation. Furthermore, we find that our approach significantly outperforms an encoder-only model in a data-poor regime (i.e., with few training examples). We investigate this observation further by varying target words to probe the models use of latent knowledge.
113 - Qiang Cui , Shu Wu , Yan Huang 2017
Sequential recommendation is one of fundamental tasks for Web applications. Previous methods are mostly based on Markov chains with a strong Markov assumption. Recently, recurrent neural networks (RNNs) are getting more and more popular and has demon strated its effectiveness in many tasks. The last hidden state is usually applied as the sequences representation to make recommendation. Benefit from the natural characteristics of RNN, the hidden state is a combination of long-term dependency and short-term interest to some degrees. However, the monotonic temporal dependency of RNN impairs the users short-term interest. Consequently, the hidden state is not sufficient to reflect the users final interest. In this work, to deal with this problem, we propose a Hierarchical Contextual Attention-based GRU (HCA-GRU) network. The first level of HCA-GRU is conducted on the input. We construct a contextual input by using several recent inputs based on the attention mechanism. This can model the complicated correlations among recent items and strengthen the hidden state. The second level is executed on the hidden state. We fuse the current hidden state and a contextual hidden state built by the attention mechanism, which leads to a more suitable users overall interest. Experiments on two real-world datasets show that HCA-GRU can effectively generate the personalized ranking list and achieve significant improvement.
The problem of ranking is a multi-billion dollar problem. In this paper we present an overview of several production quality ranking systems. We show that due to conflicting goals of employing the most effective machine learning models and responding to users in real time, ranking systems have evolved into a system of systems, where each subsystem can be viewed as a component layer. We view these layers as being data processing, representation learning, candidate selection and online inference. Each layer employs different algorithms and tools, with every end-to-end ranking system spanning multiple architectures. Our goal is to familiarize the general audience with a working knowledge of ranking at scale, the tools and algorithms employed and the challenges introduced by adopting a layered approach.
Position bias is a critical problem in information retrieval when dealing with implicit yet biased user feedback data. Unbiased ranking methods typically rely on causality models and debias the user feedback through inverse propensity weighting. Whil e practical, these methods still suffer from two major problems. First, when inferring a user click, the impact of the contextual information, such as documents that have been examined, is often ignored. Second, only the position bias is considered but other issues resulted from user browsing behaviors are overlooked. In this paper, we propose an end-to-end Deep Recurrent Survival Ranking (DRSR), a unified framework to jointly model users various behaviors, to (i) consider the rich contextual information in the ranking list; and (ii) address the hidden issues underlying user behaviors, i.e., to mine observe pattern in queries without any click (non-click queries), and to model tracking logs which cannot truly reflect the user browsing intents (untrusted observation). Specifically, we adopt a recurrent neural network to model the contextual information and estimates the conditional likelihood of user feedback at each position. We then incorporate survival analysis techniques with the probability chain rule to mathematically recover the unbiased joint probability of one users various behaviors. DRSR can be easily incorporated with both point-wise and pair-wise learning objectives. The extensive experiments over two large-scale industrial datasets demonstrate the significant performance gains of our model comparing with the state-of-the-arts.
Multi-stage cascade architecture exists widely in many industrial systems such as recommender systems and online advertising, which often consists of sequential modules including matching, pre-ranking, ranking, etc. For a long time, it is believed pr e-ranking is just a simplified version of the ranking module, considering the larger size of the candidate set to be ranked. Thus, efforts are made mostly on simplifying ranking model to handle the explosion of computing power for online inference. In this paper, we rethink the challenge of the pre-ranking system from an algorithm-system co-design view. Instead of saving computing power with restriction of model architecture which causes loss of model performance, here we design a new pre-ranking system by joint optimization of both the pre-ranking model and the computing power it costs. We name it COLD (Computing power cost-aware Online and Lightweight Deep pre-ranking system). COLD beats SOTA in three folds: (i) an arbitrary deep model with cross features can be applied in COLD under a constraint of controllable computing power cost. (ii) computing power cost is explicitly reduced by applying optimization tricks for inference acceleration. This further brings space for COLD to apply more complex deep models to reach better performance. (iii) COLD model works in an online learning and severing manner, bringing it excellent ability to handle the challenge of the data distribution shift. Meanwhile, the fully online pre-ranking system of COLD provides us with a flexible infrastructure that supports efficient new model developing and online A/B testing.Since 2019, COLD has been deployed in almost all products involving the pre-ranking module in the display advertising system in Alibaba, bringing significant improvements.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا