ﻻ يوجد ملخص باللغة العربية
Multi-stage cascade architecture exists widely in many industrial systems such as recommender systems and online advertising, which often consists of sequential modules including matching, pre-ranking, ranking, etc. For a long time, it is believed pre-ranking is just a simplified version of the ranking module, considering the larger size of the candidate set to be ranked. Thus, efforts are made mostly on simplifying ranking model to handle the explosion of computing power for online inference. In this paper, we rethink the challenge of the pre-ranking system from an algorithm-system co-design view. Instead of saving computing power with restriction of model architecture which causes loss of model performance, here we design a new pre-ranking system by joint optimization of both the pre-ranking model and the computing power it costs. We name it COLD (Computing power cost-aware Online and Lightweight Deep pre-ranking system). COLD beats SOTA in three folds: (i) an arbitrary deep model with cross features can be applied in COLD under a constraint of controllable computing power cost. (ii) computing power cost is explicitly reduced by applying optimization tricks for inference acceleration. This further brings space for COLD to apply more complex deep models to reach better performance. (iii) COLD model works in an online learning and severing manner, bringing it excellent ability to handle the challenge of the data distribution shift. Meanwhile, the fully online pre-ranking system of COLD provides us with a flexible infrastructure that supports efficient new model developing and online A/B testing.Since 2019, COLD has been deployed in almost all products involving the pre-ranking module in the display advertising system in Alibaba, bringing significant improvements.
In real-world search, recommendation, and advertising systems, the multi-stage ranking architecture is commonly adopted. Such architecture usually consists of matching, pre-ranking, ranking, and re-ranking stages. In the pre-ranking stage, vector-pro
Evaluation efforts such as TREC, CLEF, NTCIR and FIRE, alongside public leaderboard such as MS MARCO, are intended to encourage research and track our progress, addressing big questions in our field. However, the goal is not simply to identify which
Sponsored search is an indispensable business model and a major revenue contributor of almost all the search engines. From the advertisers side, participating in ranking the search results by paying for the sponsored search advertisement to attract m
The bipartite graph is a ubiquitous data structure that can model the relationship between two entity types: for instance, users and items, queries and webpages. In this paper, we study the problem of ranking vertices of a bipartite graph, based on t
The Transformer-Kernel (TK) model has demonstrated strong reranking performance on the TREC Deep Learning benchmark -- and can be considered to be an efficient (but slightly less effective) alternative to other Transformer-based architectures that em