ﻻ يوجد ملخص باللغة العربية
We present an alternative approach to the theory of free Gibbs states with convex potentials. Instead of solving SDEs, we combine PDE techniques with a notion of asymptotic approximability by trace polynomials for a sequence of functions on $M_N(mathbb{C})_{sa}^m$ to prove the following. Suppose $mu_N$ is a probability measure on on $M_N(mathbb{C})_{sa}^m$ given by uniformly convex and semi-concave potentials $V_N$, and suppose that the sequence $DV_N$ is asymptotically approximable by trace polynomials. Then the moments of $mu_N$ converge to a non-commutative law $lambda$. Moreover, the free entropies $chi(lambda)$, $underline{chi}(lambda)$, and $chi^*(lambda)$ agree and equal the limit of the normalized classical entropies of $mu_N$.
Let $(X_1,dots,X_m)$ be self-adjoint non-commutative random variables distributed according to the free Gibbs law given by a sufficiently regular convex and semi-concave potential $V$, and let $(S_1,dots,S_m)$ be a free semicircular family. We show t
We study truncated objects using elementary methods. Concretely, we use universes and the resulting natural number object to define internal truncation levels and prove they behave similar to standard truncated objects. Moreover, we take an elementar
We study the equilibrium simplex of Nica-Pimsner algebras arising from product systems of finite rank on the free abelian semigroup. First we show that every equilibrium state has a convex decomposition into parts parametrized by ideals on the unit h
In this paper we consider a bootstrap class $mathfrak C$ of countable discrete groups, which is closed under countable unions and extensions by the integers, and we study actions of such groups on C*-algebras. This class includes all torsion-free abe
We consider Pimsner algebras that arise from C*-correspondences of finite rank, as dynamical systems with their rotational action. We revisit the Laca-Neshveyev classification of their equilibrium states at positive inverse temperature along with the