ﻻ يوجد ملخص باللغة العربية
In the context of K-armed stochastic bandits with distribution only assumed to be supported by [0,1], we introduce the first algorithm, called KL-UCB-switch, that enjoys simultaneously a distribution-free regret bound of optimal order $sqrt{KT}$ and a distribution-dependent regret bound of optimal order as well, that is, matching the $kappaln T$ lower bound by Lai & Robbins (1985) and Burnetas & Katehakis (1996). This self-contained contribution simultaneously presents state-of-the-art techniques for regret minimization in bandit models, and an elementary construction of non-asymptotic confidence bounds based on the empirical likelihood method for bounded distributions.
The contextual combinatorial semi-bandit problem with linear payoff functions is a decision-making problem in which a learner chooses a set of arms with the feature vectors in each round under given constraints so as to maximize the sum of rewards of
The paper proposes a novel upper confidence bound (UCB) procedure for identifying the arm with the largest mean in a multi-armed bandit game in the fixed confidence setting using a small number of total samples. The procedure cannot be improved in th
Contextual dynamic pricing aims to set personalized prices based on sequential interactions with customers. At each time period, a customer who is interested in purchasing a product comes to the platform. The customers valuation for the product is a
We present simple and efficient algorithms for the batched stochastic multi-armed bandit and batched stochastic linear bandit problems. We prove bounds for their expected regrets that improve over the best-known regret bounds for any number of batche
A classic setting of the stochastic K-armed bandit problem is considered in this note. In this problem it has been known that KL-UCB policy achieves the asymptotically optimal regret bound and KL-UCB+ policy empirically performs better than the KL-UC