ﻻ يوجد ملخص باللغة العربية
Inspired by the quantum McKay correspondence, we consider the classical $ADE$ Lie theory as a quantum theory over $mathfrak{sl}_2$. We introduce anti-symmetric characters for representations of quantum groups and investigate the Fourier duality to study the spectral theory. In the $ADE$ Lie theory, there is a correspondence between the eigenvalues of the Coxeter element and the eigenvalues of the adjacency matrix. We formalize related notions and prove such a correspondence for representations of Verlinde algebras of quantum groups: this includes the quiver of any module category acted on by the representation category of any simple Lie algebra $mathfrak{g}$ at any level $ell$. This answers an old question posed by Victor Kac in 1994 and a recent comment by Terry Gannon.
In this paper, we construct a bialgebra theory for associative conformal algebras, namely antisymmetric infinitesimal conformal bialgebras. On the one hand, it is an attempt to give conformal structures for antisymmetric infinitesimal bialgebras. On
We introduce a subalgebra $overline F$ of the Clifford vertex superalgebra ($bc$ system) which is completely reducible as a $L^{Vir} (-2,0)$-module, $C_2$-cofinite, but it is not conformal and it is not isomorphic to the symplectic fermion algebra $m
We perform the quantisation of antisymmetric tensor-spinors (fermionic $p$-forms) $psi^alpha_{mu_1 dots mu_p}$ using the Batalin-Vilkovisky field-antifield formalism. Just as for the gravitino ($p=1$), an extra propagating Nielsen-Kallosh ghost appea
Lagrangian descriptions of irreducible and reducible integer higher-spin representations of the Poincare group subject to a Young tableaux $Y[hat{s}_1,hat{s}_2]$ with two columns are constructed within a metric-like formulation in a $d$-dimensional f
The relation between Wilson and para-Racah polynomials and representations of the degenerate rational Sklyanin algebra is established. Second order Heun operators on quadratic grids with no diagonal terms are determined. These special or S-Heun opera