ﻻ يوجد ملخص باللغة العربية
We perform the quantisation of antisymmetric tensor-spinors (fermionic $p$-forms) $psi^alpha_{mu_1 dots mu_p}$ using the Batalin-Vilkovisky field-antifield formalism. Just as for the gravitino ($p=1$), an extra propagating Nielsen-Kallosh ghost appears in quadratic gauges containing a differential operator. The appearance of this `third ghost is described within the BV formalism for arbitrary reducible gauge theories. We then use the resulting spectrum of ghosts and the Atiyah-Singer index theorem to compute gravitational anomalies.
This paper deals with various interrelations between strings and surfaces in three dimensional ambient space, two dimensional integrable models and two dimensional and four dimensional decomposed SU(2) Yang-Mills theories. Initially, a spinor version
We study the zero mode cohomology of the sum of two pure spinors. The knowledge of this cohomology allows us to better understand the structure of the massless vertex operator of the Type IIB pure spinor superstring.
We investigate a non-trivial extension of the $D-$dimensional Poincare algebra. Matrix representations are obtained. The bosonic multiplets contain antisymmetric tensor fields. It turns out that this symmetry acts in a natural geometric way on these
This paper studies the space of $L ^2 $ harmonic forms and $L ^2 $ harmonic spinors on Taub-bolt, a Ricci-flat Riemannian 4-manifold of ALF type. We prove that the space of harmonic square-integrable 2-forms on Taub-bolt is 2-dimensional and construc
We investigate the Kalb-Ramond antisymmetric tensor field as solution to the muon $g-2$ problem. In particular we calculate the lowest-order Kalb-Ramond contribution to the muon anomalous magnetic moment and find that we can fit the new experimental