ﻻ يوجد ملخص باللغة العربية
Unsupervised machine translation---i.e., not assuming any cross-lingual supervision signal, whether a dictionary, translations, or comparable corpora---seems impossible, but nevertheless, Lample et al. (2018) recently proposed a fully unsupervised machine translation (MT) model. The model relies heavily on an adversarial, unsupervised alignment of word embedding spaces for bilingual dictionary induction (Conneau et al., 2018), which we examine here. Our results identify the limitations of current unsupervised MT: unsupervised bilingual dictionary induction performs much worse on morphologically rich languages that are not dependent marking, when monolingual corpora from different domains or different embedding algorithms are used. We show that a simple trick, exploiting a weak supervision signal from identical words, enables more robust induction, and establish a near-perfect correlation between unsupervised bilingual dictionary induction performance and a previously unexplored graph similarity metric.
Unsupervised Bilingual Dictionary Induction methods based on the initialization and the self-learning have achieved great success in similar language pairs, e.g., English-Spanish. But they still fail and have an accuracy of 0% in many distant languag
Great progress has been made in unsupervised bilingual lexicon induction (UBLI) by aligning the source and target word embeddings independently trained on monolingual corpora. The common assumption of most UBLI models is that the embedding spaces of
Bilingual lexicons map words in one language to their translations in another, and are typically induced by learning linear projections to align monolingual word embedding spaces. In this paper, we show it is possible to produce much higher quality l
Most of the successful and predominant methods for bilingual lexicon induction (BLI) are mapping-based, where a linear mapping function is learned with the assumption that the word embedding spaces of different languages exhibit similar geometric str
Recent studies have demonstrated a perceivable improvement on the performance of neural machine translation by applying cross-lingual language model pretraining (Lample and Conneau, 2019), especially the Translation Language Modeling (TLM). To allevi