ﻻ يوجد ملخص باللغة العربية
We present the first results from our survey of intervening and proximate Lyman limit systems (LLSs) at $z$$sim$2.0-2.5 using the Wide Field Camera 3 on-board the Hubble Space Telescope. The quasars in our sample are projected pairs with proper transverse separations $R_perp$$leq$150 kpc and line of sight velocity separations $lesssim$11,000 km/s. We construct a stacked ultraviolet (rest-frame wavelengths 700-2000AA) spectrum of pairs corrected for the intervening Lyman forest and Lyman continuum absorption. The observed spectral composite presents a moderate flux excess for the most prominent broad emission lines, a $sim$30% decrease in flux at $lambda$=800-900AA compared to a stack of brighter quasars not in pairs at similar redshifts, and lower values of the mean free path of the HI ionizing radiation for pairs ($lambda_{rm mfp}^{912}=140.7pm20.2~h_{70}^{-1}$Mpc) compared to single quasars ($lambda_{rm mfp}^{912}=213.8pm28~h_{70}^{-1}$Mpc) at the average redshift $zsimeq2.44$. From the modelling of LLS absorption in these pairs, we find a higher ($sim$20%) incidence of proximate LLSs with $log N_{rm HI}geq17.2$ at $delta v$$<$5,000 km/s compared to single quasars ($sim$6%). These two rates are different at the 5$sigma$ level. Moreover, we find that optically-thick absorbers are equally shared between foreground and background quasars. Based on these pieces of evidence, we conclude that there is a moderate excess of gas absorbing Lyman continuum photons in our closely-projected quasar pairs compared to single quasars. We argue that this gas arises mostly within large-scale structures or partially neutral regions inside the dark matter haloes where these close pairs reside.
We investigated the properties of AGN environments, particularly environments where the association of luminous galaxies (LGs) is found within 4~Mpc from AGNs with redshifts of 0.8 -- 1.1. For comparison, three additional AGN environments, (namely, A
We present results of the MUSE-ALMA Halos, an ongoing study of the Circum-Galactic Medium (CGM) of low redshift galaxies (z < 1.4), currently comprising 14 strong HI absorbers in five quasar fields. We detect 43 galaxies associated with absorbers dow
In the present work the part of the quasar UV-optical bump within the wavelength range 1210-1450AA was studied with the help of composite spectra compiled from the samples of SDSS DR7 spectra with the similar spectral index alpha_{lambda} within 1270
High redshift quasars can be used to trace the early growth of massive galaxies and may be triggered by galaxy-galaxy interactions. We present MUSE science verification data on one such interacting system consisting of the well-studied z=3.2 PKS1614+
In this work, we use the {sc astraeus} (seminumerical rAdiative tranSfer coupling of galaxy formaTion and Reionization in N-body dArk mattEr simUlationS) framework which couples galaxy formation and reionization in the first billion years. Exploring