ﻻ يوجد ملخص باللغة العربية
High redshift quasars can be used to trace the early growth of massive galaxies and may be triggered by galaxy-galaxy interactions. We present MUSE science verification data on one such interacting system consisting of the well-studied z=3.2 PKS1614+051 quasar, its AGN companion galaxy and bridge of material radiating in Lyalpha between the quasar and its companion. We find a total of four companion galaxies (at least two galaxies are new discoveries), three of which reside within the likely virial radius of the quasar host, suggesting that the system will evolve into a massive elliptical galaxy by the present day. The MUSE data are of sufficient quality to split the extended Lyalpha emission line into narrow velocity channels. In these the gas can be seen extending towards each of the three neighbouring galaxies suggesting that the emission-line gas originates in a gravitational interaction between the galaxies and the quasar host. The photoionization source of this gas is less clear but is probably dominated by the two AGN. The quasars Lyalpha emission spectrum is double-peaked, likely due to absorbing neutral material at the quasars systemic redshift with a low column density as no damping wings are present. The spectral profiles of the AGN and bridges Lyalpha emission are also consistent with absorption at the same redshift indicating this neutral material may extend over > 50 kpc. The fact that the neutral material is seen in the line of sight to the quasar and transverse to it, and the fact that we see the quasar and it also illuminates the emission-line bridge, suggests the quasar radiates isotropically and any obscuring torus is small. These results demonstrate the power of MUSE for investigating the dynamics of interacting systems at high redshift.
AT 2018cow was the nearest and best studied example of a new breed of extra-galactic, luminous and rapidly-evolving transient. Both the progenitor systems and explosion mechanisms of these rapid transients remain a mystery - the energetics, spectral
We present results of the MUSE-ALMA Halos, an ongoing study of the Circum-Galactic Medium (CGM) of low redshift galaxies (z < 1.4), currently comprising 14 strong HI absorbers in five quasar fields. We detect 43 galaxies associated with absorbers dow
We present a study of cold gas absorption from a damped Lyman-$alpha$ absorber (DLA) at redshift $z_{rm abs}=1.946$ towards two lensed images of the quasar J144254.78+405535.5 at redshift $z_{rm QSO} = 2.590$. The physical separation of the two lines
We present a high-resolution analysis of the host galaxy of fast radio burst FRB 190608, an SBc galaxy at $z=0.11778$ (hereafter HG 190608), to dissect its local environment and its contributions to the FRB properties. Our Hubble Space Telescope WFC3
We report observations with the Atacama Large Millimetre Array (ALMA) of six submillimetre galaxies (SMGs) within 3 arcmin of the Distant Red Core (DRC) at $z=4.0$, a site of intense cluster-scale star formation, first reported by Oteo et al. (2018).