ترغب بنشر مسار تعليمي؟ اضغط هنا

Nebular spectroscopy of SN 2014J: Detection of stable nickel in near infrared spectra

75   0   0.0 ( 0 )
 نشر من قبل Suhail Dhawan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present near infrared (NIR) spectroscopy of the nearby supernova 2014J obtained $sim$450 d after explosion. We detect the [Ni II] 1.939 $mu$m line in the spectra indicating the presence of stable $^{58}$Ni in the ejecta. The stable nickel is not centrally concentrated but rather distributed as the iron. The spectra are dominated by forbidden [Fe II] and [Co II] lines. We use lines, in the NIR spectra, arising from the same upper energy levels to place constraints on the extinction from host galaxy dust. We find that that our data are in agreement with the high $A_V$ and low $R_V$ found in earlier studies from data near maximum light. Using a $^{56}$Ni mass prior from near maximum light $gamma$-ray observations, we find $sim$0.05 M$_odot$ of stable nickel to be present in the ejecta. We find that the iron group features are redshifted from the host galaxy rest frame by $sim$600 km s$^{-1}$.



قيم البحث

اقرأ أيضاً

As the closest Type Ia supernova in decades, SN 2014J provides a unique opportunity for detailed investigation into observational signatures of the progenitor system and explosion mechanism in addition to burning product distribution. We present a la te-time near-infrared spectral series from Gemini-N at $307-466$ days after the explosion. Following the $H$-band evolution probes the distribution of radioactive iron group elements, the extent of mixing, and presence of magnetic fields in the expanding ejecta. Comparing the isolated $1.6440$ $mu$m [Fe II] emission line with synthetic models shows consistency with a Chandrasekhar-mass white dwarf of $rho_c=0.7times10^9$ g cm${}^{-3}$ undergoing a delayed detonation. The ratio of the flux in the neighboring $1.54$ $mu$m emission feature to the flux in the $1.6440$ $mu$m feature shows evidence of some limited mixing of stable and radioactive iron group elements in the central regions. Additionally, the evolution of the $1.6440$ $mu$m line shows an intriguing asymmetry. When measuring line-width of this feature, the data show an increase in line width not seen in the evolution of the synthetic spectra, corresponding to $approx1{,}000$ km s${}^{-1}$, which could be caused by a localized transition to detonation producing asymmetric ionization in the ejecta. Using the difference in width between the different epochs, an asymmetric component in the central regions, corresponding to approximately the inner $2times10^{-4}$ of white dwarf mass suggests an off-center ignition of the initial explosion and hence of the kinematic center from the chemical center. Several additional models investigated, including a He detonation and a merger, have difficulty reproducing the features seen these spectra.
We present near infrared (NIR) spectroscopic and photometric observations of the nearby Type Ia SN 2014J. The seventeen NIR spectra span epochs from +15.3 to +92.5 days after $B$-band maximum light, while the $JHK_s$ photometry include epochs from $- $10 to +71 days. This data is used to constrain the progenitor system of SN 2014J utilizing the Pa$beta$ line, following recent suggestions that this phase period and the NIR in particular are excellent for constraining the amount of swept up hydrogen-rich material associated with a non-degenerate companion star. We find no evidence for Pa$beta$ emission lines in our post-maximum spectra, with a rough hydrogen mass limit of $lesssim$0.1 $M_{odot}$, which is consistent with previous limits in SN 2014J from late-time optical spectra of the H$alpha$ line. Nonetheless, the growing dataset of high-quality NIR spectra holds the promise of very useful hydrogen constraints.
We present spectropolarimetric observations of the nearby Type Ia SN 2014J in M82 over six epochs: +0, +7, +23, +51, +77, +109, and +111 days with respect to B-band maximum. The strong continuum polarization, which is constant with time, shows a wave length dependence unlike that produced by linear dichroism in Milky Way dust. The observed polarization may be due entirely to interstellar dust or include a circumstellar scattering component. We find that the polarization angle aligns with the magnetic field of the host galaxy, arguing for an interstellar origin. Additionally, we confirm a peak in polarization at short wavelengths that would imply $R_V < 2 $ along the light of sight, in agreement with earlier polarization measurements. For illustrative purposes, we include a two component fit to the continuum polarization of our +51 day epoch that combines a circumstellar scattering component with interstellar dust where scattering can account for over half of the polarization at $4000$ AA. Upon removal of the interstellar polarization signal, SN 2014J exhibits very low levels of continuum polarization. Asymmetries in the distribution of elements within the ejecta are visible through moderate levels of time-variable polarization in accordance with the Si II 6355 AA absorption line. At maximum light, the line polarization reaches $sim0.6$% and decreases to $sim0.4%$ one week later. This feature also forms a loop on the $q_{RSP}$-$u_{RSP}$ plane illustrating that the ion does not have an axisymmetric distribution. The observed polarization properties suggest the explosion geometry of SN 2014J is generally spheroidal with a clumpy distribution of silicon.
128 - P.A. Mazzali 2015
A series of optical and one near-infrared nebular spectra covering the first year of the Type Ia supernova SN 2011fe are presented and modelled. The density profile that proved best for the early optical/ultraviolet spectra, rho-11fe, was extended to lower velocities to include the regions that emit at nebular epochs. Model rho-11fe is intermediate between the fast deflagration model W7 and a low-energy delayed-detonation. Good fits to the nebular spectra are obtained if the innermost ejecta are dominated by neutron-rich, stable Fe-group species, which contribute to cooling but not to heating. The correct thermal balance can thus be reached for the strongest [FeII] and [FeIII] lines to be reproduced with the observed ratio. The 56Ni mass thus obtained is 0.47 +/- 0.05 Mo. The bulk of 56Ni has an outermost velocity of ~8500 km/s. The mass of stable iron is 0.23 +/- 0.03 Mo. Stable Ni has low abundance, ~10^{-2} Mo. This is sufficient to reproduce an observed emission line near 7400 A. A sub-Chandrasekhar explosion model with mass 1.02 Mo and no central stable Fe does not reproduce the observed line ratios. A mock model where neutron-rich Fe-group species are located above 56Ni following recent suggestions is also shown to yield spectra that are less compatible with the observations. The densities and abundances in the inner layers obtained from the nebular analysis, combined with those of the outer layers previously obtained, are used to compute a synthetic bolometric light curve, which compares favourably with the light curve of SN 2011fe.
The light curves of Type Ia supernovae (SNe Ia) are powered by the radioactive decay of $^{56}$Ni to $^{56}$Co at early times, and the decay of $^{56}$Co to $^{56}$Fe from ~60 days after explosion. We examine the evolution of the [Co III] 5892 A emis sion complex during the nebular phase for SNe Ia with multiple nebular spectra and show that the line flux follows the square of the mass of $^{56}$Co as a function of time. This result indicates both efficient local energy deposition from positrons produced in $^{56}$Co decay, and long-term stability of the ionization state of the nebula. We compile 77 nebular spectra of 25 SN Ia from the literature and present 17 new nebular spectra of 7 SNe Ia, including SN2014J. From these we measure the flux in the [Co III] 5892 A line and remove its well-behaved time dependence to infer the initial mass of $^{56}$Ni ($M_{Ni}$) produced in the explosion. We then examine $^{56}$Ni yields for different SN Ia ejected masses ($M_{ej}$ - calculated using the relation between light curve width and ejected mass) and find the $^{56}$Ni masses of SNe Ia fall into two regimes: for narrow light curves (low stretch s~0.7-0.9), $M_{Ni}$ is clustered near $M_{Ni}$ ~ 0.4$M_odot$ and shows a shallow increase as $M_{ej}$ increases from ~1-1.4$M_odot$; at high stretch, $M_{ej}$ clusters at the Chandrasekhar mass (1.4$M_odot$) while $M_{Ni}$ spans a broad range from 0.6-1.2$M_odot$. This could constitute evidence for two distinct SN Ia explosion mechanisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا