ﻻ يوجد ملخص باللغة العربية
X-ray observations of some short gamma-ray bursts indicate that a long-lived neutron star can form as a remnant of a binary neutron star merger. We develop a gravitational-wave detection pipeline for a long-lived binary neutron star merger remnant guided by these counterpart electromagnetic observations. We determine the distance out to which a gravitational-wave signal can be detected with Advanced LIGO at design sensitivity and the Einstein Telescope using this method, guided by X-ray data from GRB140903A as an example. Such gravitational waves can in principle be detected out to $sim$ 20 Mpc for Advanced LIGO and $sim$ 450 Mpc for the Einstein Telescope assuming a fiducial ellipticity of $10^{-2}$. However, in practice we can rule out such high values of the ellipticity as the total energy emitted in gravitational waves would be greater than the total rotational energy budget of the system. We show how these observations can be used to place upper limits on the ellipticity using these energy considerations. For GRB140903A, the upper limit on the ellipticity is $10^{-3}$, which lowers the detectable distance to $sim$ 2 Mpc and $sim$ 45 Mpc for Advanced LIGO and the Einstein Telescope, respectively.
We present a proof-of-concept study, based on numerical-relativity simulations, of how gravitational waves (GWs) from neutron star merger remnants can probe the nature of matter at extreme densities. Phase transitions and extra degrees of freedom can
The first observation of a binary neutron star coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remn
Two neutron stars merge somewhere in the Universe approximately every 10 seconds, creating violent explosions observable in gravitational waves and across the electromagnetic spectrum. The transformative coincident gravitational-wave and electromagne
The detection of gravitational waves from neutron star merger events has opened up a new field of multi-messenger astronomy linking gravitational waves events to short-gamma ray bursts and kilonova afterglows. A further - yet to be discovered - elect
Neutron star binary mergers are strong sources of gravitational waves (GWs). Promising electromagnetic counterparts are short gamma-ray bursts (GRBs) but the emission is highly collimated. We propose that the scattering of the long-lasting plateau em