ﻻ يوجد ملخص باللغة العربية
Neutron star binary mergers are strong sources of gravitational waves (GWs). Promising electromagnetic counterparts are short gamma-ray bursts (GRBs) but the emission is highly collimated. We propose that the scattering of the long-lasting plateau emission in short GRBs by the merger ejecta produces nearly isotropic emission for $sim 10^4$ s with flux $10^{-13}-10^{-10}$ erg cm$^{-2}$ s$^{-1}$ at 100 Mpc in X-ray. This is detectable by Swift XRT and wide field X-ray detectors such as ISS-Lobster, Einstein Probe, eROSITA and WF-MAXI, which are desired by the infrared and optical follow-ups to localize and measure the distance to the host galaxy. The scattered X-rays obtain linear polarization, which correlates with the jet direction, X-ray luminosity and GW polarizations. The activity of plateau emission is also a natural energy source of a macronova (or kilonova) detected in short GRB 130603B without the $r$-process radioactivity.
We present results from a controlled numerical experiment investigating the effect of stellar density gas on the coalescence of binary black holes (BBHs) and the resulting gravitational waves (GWs). This investigation is motivated by the proposed ste
X-ray observations of some short gamma-ray bursts indicate that a long-lived neutron star can form as a remnant of a binary neutron star merger. We develop a gravitational-wave detection pipeline for a long-lived binary neutron star merger remnant gu
We present an effective, low-dimensionality frequency-domain template for the gravitational wave signal from the stellar remnants from binary neutron star coalescence. A principal component decomposition of a suite of numerical simulations of binary
Many low-mass X-ray binary (LMXB) systems are observed to contain rapidly spinning neutron stars. The spin frequencies of these systems may be limited by the emission of gravitational waves. This can happen if their mass distribution is sufficiently
The afterglows to gamma-ray bursts (GRBs) are due to synchrotron emission from shocks generated as an ultra-relativistic outflow decelerates. A forward and a reverse shock will form, however, where emission from the forward shock is well studied as a