ﻻ يوجد ملخص باللغة العربية
Modeling flow through porous media with multiple pore-networks has now become an active area of research due to recent technological endeavors like geological carbon sequestration and recovery of hydrocarbons from tight rock formations. Herein, we consider the double porosity/permeability (DPP) model, which describes the flow of a single-phase incompressible fluid through a porous medium exhibiting two dominant pore-networks with a possibility of mass transfer across them. We present a stable mixed discontinuous Galerkin (DG) formulation for the DPP model. The formulation enjoys several attractive features. These include: (i) Equal-order interpolation for all the field variables (which is computationally the most convenient) is stable under the proposed formulation. (ii) The stabilization terms are residual-based, and the stabilization parameters do not contain any mesh-dependent parameters. (iii) The formulation is theoretically shown to be consistent, stable, and hence convergent. (iv) The formulation supports non-conforming discretizations and distorted meshes. (v) The DG formulation has improved element-wise (local) mass balance compared to the corresponding continuous formulation. (vi) The proposed formulation can capture physical instabilities in coupled flow and transport problems under the DPP model.
The flow of incompressible fluids through porous media plays a crucial role in many technological applications such as enhanced oil recovery and geological carbon-dioxide sequestration. The flow within numerous natural and synthetic porous materials
The objective of this paper is twofold. First, we propose two composable block solver methodologies to solve the discrete systems that arise from finite element discretizations of the double porosity/permeability (DPP) model. The DPP model, which is
We analyze Galerkin discretizations of a new well-posed mixed space-time variational formulation of parabolic PDEs. For suitable pairs of finite element trial spaces, the resulting Galerkin operators are shown to be uniformly stable. The method is co
We present a discontinuous Galerkin internal-penalty scheme that is applicable to a large class of linear and non-linear elliptic partial differential equations. The scheme constitutes the foundation of the elliptic solver for the SpECTRE numerical r
Discontinuous Galerkin (DG) methods are extensions of the usual Galerkin finite element methods. Although there are vast amount of studies on DG methods, most of them have assumed shape-regularity conditions on meshes for both theoretical error analy