ﻻ يوجد ملخص باللغة العربية
We work on a 4-manifold equipped with Lorentzian metric $g$ and consider a volume-preserving diffeomorphism which is the unknown quantity of our mathematical model. The diffeomorphism defines a second Lorentzian metric $h$, the pullback of $g$. Motivated by elasticity theory, we introduce a Lagrangian expressed algebraically (without differentiations) via our pair of metrics. Analysis of the resulting nonlinear field equations produces three main results. Firstly, we show that for Ricci-flat manifolds our linearised field equations are Maxwells equations in the Lorenz gauge with exact current. Secondly, for Minkowski space we construct explicit massless solutions of our nonlinear field equations; these come in two distinct types, right-handed and left-handed. Thirdly, for Minkowski space we construct explicit massive solutions of our nonlinear field equations; these contain a positive parameter which has the geometric meaning of quantum mechanical mass and a real parameter which may be interpreted as electric charge. In constructing explicit solutions of nonlinear field equations we resort to group-theoretic ideas: we identify special 4-dimensional subgroups of the Poincare group and seek diffeomorphisms compatible with their action, in a suitable sense.
Higgs fields are attributes of classical gauge theory on a principal bundle $Pto X$ whose structure Lie group $G$ if is reducible to a closed subgroup $H$. They are represented by sections of the quotient bundle $P/Hto X$. A problem lies in descripti
Two one-parameter families of twists providing kappa-Minkowski * -product deformed spacetime are considered: Abelian and Jordanian. We compare the derivation of quantum Minkowski space from two perspectives. The first one is the Hopf module algebra p
In the present paper we propose a new approach to quantum fields in terms of category algebras and states on categories. We define quantum fields and their states as category algebras and states on causal categories with partial involution structures
We derive a lower bound for energies of harmonic maps of convex polyhedra in $ R^3 $ to the unit sphere $S^2,$ with tangent boundary conditions on the faces. We also establish that $C^infty$ maps, satisfying tangent boundary conditions, are dense wit
We interpret, in the realm of relativistic quantum field theory, the tangential operator given by Coleman, Mandula as an appropriate coordinate operator. The investigation shows that the operator generates a Snyder-like noncommutative spacetime with