ﻻ يوجد ملخص باللغة العربية
We interpret, in the realm of relativistic quantum field theory, the tangential operator given by Coleman, Mandula as an appropriate coordinate operator. The investigation shows that the operator generates a Snyder-like noncommutative spacetime with a minimal length that is given by the mass. By using this operator to define a noncommutative spacetime, we obtain a Poincare invariant noncommutative spacetime and in addition solve the soccer-ball problem. Moreover, from recent progress in deformation theory we extract the idea how to obtain, in a physical and mathematical well-defined manner, an emerging noncommutative spacetime. This is done by a strict deformation quantization known as Rieffel deformation (or warped convolutions). The result is a noncommutative spacetime combining a Snyder and a Moyal-Weyl type of noncommutativity that in addition behaves covariant under transformations of the textbf{whole} Poincare group.
We introduce a framework in noncommutative geometry consisting of a $*$-algebra $mathcal A$, a bimodule $Omega^1$ endowed with a derivation $mathcal Ato Omega^1$ and with a Hermitian structure $Omega^1otimes bar{Omega}^1to mathcal A$ (a noncommutativ
It is noted that the Poincare sphere for polarization optics contains the symmetries of the Lorentz group. The sphere is thus capable of describing the internal space-time symmetries dictated by Wigners little groups. For massive particles, the littl
We study the Harmonic and Dirac Oscillator problem extended to a three-dimensional noncom- mutative space where the noncommutativity is induced by a shift of the dynamical variables with generators of SL(2;R) in a unitary irreducible representation.
We present a physical interpretation of the doubling of the algebra, which is the basic ingredient of the noncommutative spectral geometry, developed by Connes and collaborators as an approach to unification. We discuss its connection to dissipation
We investigate a new property of nets of local algebras over 4-dimensional globally hyperbolic spacetimes, called punctured Haag duality. This property consists in the usual Haag duality for the restriction of the net to the causal complement of a po