ﻻ يوجد ملخص باللغة العربية
Neutron-capture reactions on very neutron-rich nuclei are essential for heavy-element nucleosynthesis through the rapid neutron-capture process, now shown to take place in neutron-star merger events. For these exotic nuclei, radiative neutron capture is extremely sensitive to their $gamma$-emission probability at very low $gamma$ energies. In this work, we present measurements of the $gamma$-decay strength of $^{70}$Ni over the wide range $1.3 leq E_{gamma} leq 8 $ MeV. A significant enhancement is found in the $gamma$-decay strength for transitions with $E_gamma < 3$ MeV. At present, this is the most neutron-rich nucleus displaying this feature, proving that this phenomenon is not restricted to stable nuclei. We have performed $E1$-strength calculations within the quasiparticle time-blocking approximation, which describe our data above $E_gamma simeq 5$ MeV very well. Moreover, large-scale shell-model calculations indicate an $M1$ nature of the low-energy $gamma$ strength. This turns out to be remarkably robust with respect to the choice of interaction, truncation and model space, and we predict its presence in the whole isotopic chain, in particular the neutron-rich $^{72,74,76}mathrm{Ni}$.
We report the observation of a very exotic decay mode at the proton drip-line, the $beta$-delayed $gamma$-proton decay, clearly seen in the $beta$ decay of the $T_z$ = -2 nucleus $^{56}$Zn. Three $gamma$-proton sequences have been observed after the
Experimental tests of the Brink-Axel hypothesis relating gamma strength functions (GSF) deduced from absorption and emission experiments are discussed. High-resolution inelastic proton scattering at energies of a few hundred MeV and at very forwrd an
Nuclear level densities and $gamma$-ray strength functions have been extracted for $^{59, 60}rm{Ni}$, using the Oslo method on data sets from the $^{60}$Ni($^{3}$He,$^{3}$He$^{prime}gamma$)$^{60}$Ni and $^{60}$Ni($^{3}$He,$alphagamma$)$^{59}$Ni react
We studied the proton-rich $T_z=-1$ nucleus $^{70}$Kr through inelastic scattering at intermediate energies in order to extract the reduced transition probability, $B(E2;;0^+ rightarrow 2^+)$. Comparison with the other members of the $A=70$ isospin t
Shell evolution is studied in the neutron-rich silicon isotopes 36,38,40 Si using neutron single-particle strengths deduced from one-neutron knockout reactions. Configurations involving neutron excita- tions across the N = 20 and N = 28 shell gaps ar