ﻻ يوجد ملخص باللغة العربية
Nuclear level densities and $gamma$-ray strength functions have been extracted for $^{59, 60}rm{Ni}$, using the Oslo method on data sets from the $^{60}$Ni($^{3}$He,$^{3}$He$^{prime}gamma$)$^{60}$Ni and $^{60}$Ni($^{3}$He,$alphagamma$)$^{59}$Ni reactions. Above the neutron separation energy, S$_n$, we have measured the $gamma$-ray strength functions for $^{61}$Ni and $^{60}$Ni in photoneutron experiments. The low-energy part of the $^{59,60}$Ni $gamma$-ray strength functions show an increase for decreasing $gamma$ energies. The experimental $gamma$-ray strength functions are compared with $M1$ $gamma$-ray strength functions calculated within the shell model. The $E1$ $gamma$-ray strength function of $^{60}$Ni has been calculated using the QTBA framework. The QTBA calculations describe the data above $E_{gamma}approx$ 7 MeV, while the shell-model calculations agree qualitatively with the low energy part of the $gamma$-ray strength function. Hence, we give a plausible explanation of the observed shape of the $gamma$-decay strength.
Neutron-capture reactions on very neutron-rich nuclei are essential for heavy-element nucleosynthesis through the rapid neutron-capture process, now shown to take place in neutron-star merger events. For these exotic nuclei, radiative neutron capture
The $E0$ transition strength in the $2^+_2 rightarrow 2^+_1$ transitions of $^{58,60,62}$Ni have been determined for the first time following a series of measurements at the Australian National University (ANU) and the University of Kentucky (UK). Th
Excited states in $^{58,60,62}$Ni were populated via inelastic proton scattering at the Australian National University as well as via inelastic neutron scattering at the University of Kentucky Accelerator Laboratory. The Super-e electron spectrometer
The results of the study of gamma-transition description in fast neutron capture and photofission are presented. Recent experimental data were used, namely, the spectrum of prompt gamma-rays in the energy range 2{div}18 MeV from 14-MeV neutron captur
The $^{58}$Ni$(n,gamma)^{59}$Ni cross section was measured with a combination of the activation technique and accelerator mass spectrometry (AMS). The neutron activations were performed at the Karlsruhe 3.7 MV Van de Graaff accelerator using the quas