ترغب بنشر مسار تعليمي؟ اضغط هنا

Seemless Utilization of Heterogeneous XSede Resources to Accelerate Processing of a High Value Functional Neuroimaging Dataset

55   0   0.0 ( 0 )
 نشر من قبل Don Krieger
 تاريخ النشر 2018
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the technical effort used to process a voluminous high value human neuroimaging dataset on the Open Science Grid with opportunistic use of idle HPC resources to boost computing capacity more than 5-fold. With minimal software development effort and no discernable competitive interference with other HPC users, this effort delivered 15,000,000 core hours over 7 months.



قيم البحث

اقرأ أيضاً

The CamCAN Lifespan Neuroimaging Dataset, Cambridge (UK) Centre for Ageing and Neuroscience, was acquired and processed beginning in December, 2016. The referee consensus solver deployed to the Open Science Grid was used for this task. The dataset in cludes demographic and screening measures, a high-resolution MRI scan of the brain, and whole-head magnetoencephalographic (MEG) recordings during eyes closed rest (560 sec), a simple task (540 sec), and passive listening/viewing (140 sec). The data were collected from 619 neurologically normal individuals, ages 18-87. The processed results from the resting recordings are completed and available online. These constitute 1.7 TBytes of data including the location within the brain (1 mm resolution), time stamp (1 msec resolution), and 80 msec time course for each of 3.7 billion validated neuroelectric events, i.e. mean 6.1 million events for each of the 619 participants. The referee consensus solver provides high yield (mean 11,000 neuroelectric currents/sec; standard deviation (sd): 3500/sec) high confidence (p < 10-12 for each identified current) measures of the neuroelectric currents whose magnetic fields are detected in the MEG recordings. We describe the solver, the implementation of the solver deployed on the Open Science Grid, the workflow management system, the opportunistic use of high performance computing (HPC) resources to add computing capacity to the Open Science Grid reserved for this project, and our initial findings from the recently completed processing of the resting recordings. This required 14 million core hours, i.e. 40 core hours per second of data.
Noise is an inherent part of neuronal dynamics, and thus of the brain. It can be observed in neuronal activity at different spatiotemporal scales, including in neuronal membrane potentials, local field potentials, electroencephalography, and magnetoe ncephalography. A central research topic in contemporary neuroscience is to elucidate the functional role of noise in neuronal information processing. Experimental studies have shown that a suitable level of noise may enhance the detection of weak neuronal signals by means of stochastic resonance. In response, theoretical research, based on the theory of stochastic processes, nonlinear dynamics, and statistical physics, has made great strides in elucidating the mechanism and the many benefits of stochastic resonance in neuronal systems. In this perspective, we review recent research dedicated to neuronal stochastic resonance in biophysical mathematical models. We also explore the regulation of neuronal stochastic resonance, and we outline important open questions and directions for future research. A deeper understanding of neuronal stochastic resonance may afford us new insights into the highly impressive information processing in the brain.
Large, open-source consortium datasets have spurred the development of new and increasingly powerful machine learning approaches in brain connectomics. However, one key question remains: are we capturing biologically relevant and generalizable inform ation about the brain, or are we simply overfitting to the data? To answer this, we organized a scientific challenge, the Connectomics in NeuroImaging Transfer Learning Challenge (CNI-TLC), held in conjunction with MICCAI 2019. CNI-TLC included two classification tasks: (1) diagnosis of Attention-Deficit/Hyperactivity Disorder (ADHD) within a pre-adolescent cohort; and (2) transference of the ADHD model to a related cohort of Autism Spectrum Disorder (ASD) patients with an ADHD comorbidity. In total, 240 resting-state fMRI time series averaged according to three standard parcellation atlases, along with clinical diagnosis, were released for training and validation (120 neurotypical controls and 120 ADHD). We also provided demographic information of age, sex, IQ, and handedness. A second set of 100 subjects (50 neurotypical controls, 25 ADHD, and 25 ASD with ADHD comorbidity) was used for testing. Models were submitted in a standardized format as Docker images through ChRIS, an open-source image analysis platform. Utilizing an inclusive approach, we ranked the methods based on 16 different metrics. The final rank was calculated using the rank product for each participant across all measures. Furthermore, we assessed the calibration curves of each method. Five participants submitted their model for evaluation, with one outperforming all other methods in both ADHD and ASD classification. However, further improvements are needed to reach the clinical translation of functional connectomics. We are keeping the CNI-TLC open as a publicly available resource for developing and validating new classification methodologies in the field of connectomics.
The best approach to quantify human brain functional reconfigurations in response to varying cognitive demands remains an unresolved topic in network neuroscience. We propose that such functional reconfigurations may be categorized into three differe nt types: i) Network Configural Breadth, ii) Task-to-Task transitional reconfiguration, and iii) Within-Task reconfiguration. In order to quantify these reconfigurations, we propose a mesoscopic framework focused on functional networks (FNs) or communities. To do so, we introduce a 2D network morphospace that relies on two novel mesoscopic metrics, Trapping Efficiency (TE) and Exit Entropy (EE), which capture topology and integration of information within and between a reference set of FNs. In this study, we use this framework to quantify the Network Configural Breadth across different tasks. We show that the metrics defining this morphospace can differentiate FNs, cognitive tasks and subjects. We also show that network configural breadth significantly predicts behavioral measures, such as episodic memory, verbal episodic memory, fluid intelligence and general intelligence. In essence, we put forth a framework to explore the cognitive space in a comprehensive manner, for each individual separately, and at different levels of granularity. This tool that can also quantify the FN reconfigurations that result from the brain switching between mental states.
Positron Emission Tomography (PET) is an imaging technique which can be used to investigate chemical changes in human biological processes such as cancer development or neurochemical reactions. Most dynamic PET scans are currently analyzed based on t he assumption that linear first order kinetics can be used to adequately describe the system under observation. However, there has recently been strong evidence that this is not the case. In order to provide an analysis of PET data which is free from this compartmental assumption, we propose a nonparametric deconvolution and analysis model for dynamic PET data based on functional principal component analysis. This yields flexibility in the possible deconvolved functions while still performing well when a linear compartmental model setup is the true data generating mechanism. As the deconvolution needs to be performed on only a relative small number of basis functions rather than voxel by voxel in the entire 3-D volume, the methodology is both robust to typical brain imaging noise levels while also being computationally efficient. The new methodology is investigated through simulations in both 1-D functions and 2-D images and also applied to a neuroimaging study whose goal is the quantification of opioid receptor concentration in the brain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا