ﻻ يوجد ملخص باللغة العربية
Positron Emission Tomography (PET) is an imaging technique which can be used to investigate chemical changes in human biological processes such as cancer development or neurochemical reactions. Most dynamic PET scans are currently analyzed based on the assumption that linear first order kinetics can be used to adequately describe the system under observation. However, there has recently been strong evidence that this is not the case. In order to provide an analysis of PET data which is free from this compartmental assumption, we propose a nonparametric deconvolution and analysis model for dynamic PET data based on functional principal component analysis. This yields flexibility in the possible deconvolved functions while still performing well when a linear compartmental model setup is the true data generating mechanism. As the deconvolution needs to be performed on only a relative small number of basis functions rather than voxel by voxel in the entire 3-D volume, the methodology is both robust to typical brain imaging noise levels while also being computationally efficient. The new methodology is investigated through simulations in both 1-D functions and 2-D images and also applied to a neuroimaging study whose goal is the quantification of opioid receptor concentration in the brain.
The Argo data is a modern oceanography dataset that provides unprecedented global coverage of temperature and salinity measurements in the upper 2,000 meters of depth of the ocean. We study the Argo data from the perspective of functional data analys
Evolutionary models of languages are usually considered to take the form of trees. With the development of so-called tree constraints the plausibility of the tree model assumptions can be addressed by checking whether the moments of observed variable
Motivated by the analysis of high-dimensional neuroimaging signals located over the cortical surface, we introduce a novel Principal Component Analysis technique that can handle functional data located over a two-dimensional manifold. For this purpos
One of the classic concerns in statistics is determining if two samples come from thesame population, i.e. homogeneity testing. In this paper, we propose a homogeneitytest in the context of Functional Data Analysis, adopting an idea from multivariate
Early detection of changes in the frequency of events is an important task, in, for example, disease surveillance, monitoring of high-quality processes, reliability monitoring and public health. In this article, we focus on detecting changes in multi