ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopic Validation of Low-Metallicity Stars from RAVE

51   0   0.0 ( 0 )
 نشر من قبل Vinicius Placco
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from a medium-resolution (R ~ 2, 000) spectroscopic follow-up campaign of 1,694 bright (V < 13.5), very metal-poor star candidates from the RAdial Velocity Experiment (RAVE). Initial selection of the low-metallicity targets was based on the stellar parameters published in RAVE Data Releases 4 and 5. Follow-up was accomplished with the Gemini-N and Gemini-S, the ESO/NTT, the KPNO/Mayall, and the SOAR telescopes. The wavelength coverage for most of the observed spectra allows for the determination of carbon and {alpha}-element abundances, which are crucial for con- sidering the nature and frequency of the carbon-enhanced metal-poor (CEMP) stars in this sample. We find that 88% of the observed stars have [Fe/H] <= -1.0, 61% have [Fe/H] <= -2.0, and 3% have [Fe/H] <= -3.0 (with four stars at [Fe/H] <= -3.5). There are 306 CEMP star candidates in this sample, and we identify 169 CEMP Group I, 131 CEMP Group II, and 6 CEMP Group III stars from the A(C) vs. [Fe/H] diagram. Inspection of the [alpha/C] abundance ratios reveals that five of the CEMP Group II stars can be classified as mono-enriched second-generation stars. Gaia DR1 matches were found for 734 stars, and we show that transverse velocities can be used as a confirmatory selection criteria for low-metallicity candidates. Selected stars from our validated list are being followed-up with high-resolution spectroscopy, to reveal their full chemical abundance patterns for further studies.



قيم البحث

اقرأ أيضاً

167 - Andrea Kunder , G. Bono 2014
Stellar population studies of globular clusters have suggested that the brightest clusters in the Galaxy might actually be the remnant nuclei of dwarf spheroidal galaxies. If the present Galactic globular clusters formed within larger stellar systems , they are likely surrounded by extra-tidal halos and/or tails made up of stars that were tidally stripped from their parent systems. The stellar surroundings around globular clusters are therefore one of the best places to look for the remnants of an ancient dwarf galaxy. Here an attempt is made to search for tidal debris around the supernovae enriched globular clusters M22 and NGC 1851 as well as the kinematically unique cluster NGC 3201. The stellar parameters from the Radial Velocity Experiment (RAVE) are used to identify stars with RAVE metallicities, radial velocities and elemental-abundances consistent with the abundance patterns and properties of the stars in M22, NGC 1851 and NGC 3201. The discovery of RAVE stars that may be associated with M22 and NGC 1851 are reported, some of which are at projected distances of ~10 degrees away from the core of these clusters. Numerous RAVE stars associated with NGC 3201 suggest that either the tidal radius of this cluster is underestimated, or that there are some unbound stars extending a few arc minutes from the edge of the clusters radius. No further extra-tidal stars associated with NGC 3201 could be identified. The bright magnitudes of the RAVE stars make them easy targets for high resolution follow-up observations, allowing an eventual further chemical tagging to solidify (or exclude) stars outside the tidal radius of the cluster as tidal debris. In both our radial velocity histograms of the regions surrounding NGC 1851 and NGC 3201, a peak of stars at 230 km/s is seen, consistent with extended tidal debris from omega Centauri.
Stars which start their lives with spectral types O and early-B are the progenitors of core-collapse supernovae, long gamma-ray bursts, neutron stars, and black holes. These massive stars are the primary sources of stellar feedback in star-forming ga laxies. At low metallicities, the properties of massive stars and their evolution are not yet fully explored. Here we report a spectroscopic study of 320 OB stars in the Small Magellanic Cloud. The data, which we obtained with the ESO Very Large Telescope, were analyzed using state-of-the-art stellar atmosphere models. We find that stellar winds of our sample stars are much weaker than theoretically expected. The stellar rotation rates show a bi-modal distribution. The well-populated upper Hertzsprung-Russell diagram including our sample OB stars from SMC Wing as well as additional evolved stars all over SMC from the literature shows a strict luminosity limit. The comparison with single-star evolutionary tracks suggests a dichotomy in the fate of massive stars in the SMC. Only stars with Minit<30M$_{odot}$ seem to evolve from the main sequence to the cool side of the HRD to become a red supergiant and to explode as type II-P supernova. In contrast, stars with Minit>30M$_{odot}$ appear to stay always hot and might evolve quasi chemically homogeneously, finally collapsing to relatively massive black holes. However, we find no indication that chemical mixing is correlated with rapid rotation. We report extended star-formation episodes in a quiescent low-density region of the Wing, which is progressing stochastically. We measure the key parameters of stellar feedback and establish the links between the rates of star formation and supernovae. Our study reveals that in metal-poor environments the stellar feedback is dominated by core-collapse supernovae in combination with winds and ionizing radiation supplied by a few of the most massive stars.
We present synthetic spectra and SEDs computed along evolutionary tracks at Z=1/5 Zsun and Z=1/30 Zsun, for masses between 15 and 150 Msun. We predict that the most massive stars all start their evolution as O2 dwarfs at sub-solar metallicities. The fraction of lifetime spent in the O2V phase increases at lower metallicity. The distribution of dwarfs and giants we predict in the SMC accurately reproduces the observations. Supergiants appear at slightly higher effective temperatures than we predict. More massive stars enter the giant and supergiant phases closer to the ZAMS, but not as close as for solar metallicity. This is due to the reduced stellar winds at lower metallicity. Our models with masses higher than ~60 Msun should appear as O and B stars, whereas these objects are not observed, confirming a trend reported in the recent literature. At Z=1/30 Zsun, dwarfs cover a wider fraction of the MS and giants and supergiants appear at lower effective temperatures than at Z=1/5 Zsun. The UV spectra of these low-metallicity stars have only weak P-Cygni profiles. HeII 1640 sometimes shows a net emission in the most massive models, with an equivalent width reaching ~1.2 A. For both sets of metallicities, we provide synthetic spectroscopy in the wavelength range 4500-8000 A. This range will be covered by the instruments HARMONI and MOSAICS on the ELT and will be relevant to identify hot massive stars in Local Group galaxies with low extinction. We suggest the use of the ratio of HeI 7065 to HeII 5412 as a diagnostic for spectral type. We show that this ratio does not depend on metallicity. Finally, we discuss the ionizing fluxes of our models. The relation between the hydrogen ionizing flux per unit area versus effective temperature depends only weakly on metallicity. The ratios of HeI and HeII to H ionizing fluxes both depend on metallicity, although in a slightly different way.
We present a chemical abundance analysis of a metal-poor star, ROA 276, in the stellar system omega Centauri. We confirm that this star has an unusually high [Sr/Ba] abundance ratio. Additionally, ROA 276 exhibits remarkably high abundance ratios, [X /Fe], for all elements from Cu to Mo along with normal abundance ratios for the elements from Ba to Pb. The chemical abundance pattern of ROA 276, relative to a primordial omega Cen star ROA 46, is best fit by a fast-rotating low-metallicity massive stellar model of 20 Msun, [Fe/H] = -1.8, and an initial rotation 0.4 times the critical value; no other nucleosynthetic source can match the neutron-capture element distribution. ROA 276 arguably offers the most definitive proof to date that fast-rotating massive stars contributed to the production of heavy elements in the early Universe.
Metal-poor massive stars dominate the light we observe from star-forming dwarf galaxies and may have produced the bulk of energetic photons that reionized the universe at high redshift. Yet, the rarity of observations of individual O stars below the $20%$ solar metallicity ($Z_odot$) of the Small Magellanic Cloud (SMC) hampers our ability to model the ionizing fluxes of metal-poor stellar populations. We present new Hubble Space Telescope far-ultraviolet (FUV) spectra of three O-dwarf stars in the galaxies Leo P ($3%,Z_odot$), Sextans A ($6%,Z_odot$), and WLM ($14%,Z_odot$). We quantify equivalent widths of photospheric metal lines and strengths of wind-sensitive features, confirming that both correlate with metallicity. We infer the stars fundamental properties by modeling their FUV through near-infrared spectral energy distributions and identify stars in the SMC with similar properties to each of our targets. Comparing to the FUV spectra of the SMC analogs suggests that (1) the star in WLM has an SMC-like metallicity, and (2) the most metal-poor star in Leo P is driving a much weaker stellar wind than its SMC counterparts. We measure projected rotation speeds and find that the two most metal-poor stars have high $v ,mathrm{sin}(i),geq,290,mathrm{km},mathrm{s}^{-1}$, and estimate just a $3-6%$ probability of finding two fast rotators if the metal-poor stars are drawn from the same $v ,mathrm{sin}(i)$ distribution observed for O dwarfs in the SMC. These observations suggest that models should include the impact of rotation and weak winds on ionizing flux to accurately interpret observations of metal-poor galaxies in both the near and distant universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا