ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopic Signatures of Extra-Tidal Stars Around the Globular Clusters NGC 6656 (M22), NGC 3201 and NGC 1851 from RAVE

167   0   0.0 ( 0 )
 نشر من قبل Andrea Kunder
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stellar population studies of globular clusters have suggested that the brightest clusters in the Galaxy might actually be the remnant nuclei of dwarf spheroidal galaxies. If the present Galactic globular clusters formed within larger stellar systems, they are likely surrounded by extra-tidal halos and/or tails made up of stars that were tidally stripped from their parent systems. The stellar surroundings around globular clusters are therefore one of the best places to look for the remnants of an ancient dwarf galaxy. Here an attempt is made to search for tidal debris around the supernovae enriched globular clusters M22 and NGC 1851 as well as the kinematically unique cluster NGC 3201. The stellar parameters from the Radial Velocity Experiment (RAVE) are used to identify stars with RAVE metallicities, radial velocities and elemental-abundances consistent with the abundance patterns and properties of the stars in M22, NGC 1851 and NGC 3201. The discovery of RAVE stars that may be associated with M22 and NGC 1851 are reported, some of which are at projected distances of ~10 degrees away from the core of these clusters. Numerous RAVE stars associated with NGC 3201 suggest that either the tidal radius of this cluster is underestimated, or that there are some unbound stars extending a few arc minutes from the edge of the clusters radius. No further extra-tidal stars associated with NGC 3201 could be identified. The bright magnitudes of the RAVE stars make them easy targets for high resolution follow-up observations, allowing an eventual further chemical tagging to solidify (or exclude) stars outside the tidal radius of the cluster as tidal debris. In both our radial velocity histograms of the regions surrounding NGC 1851 and NGC 3201, a peak of stars at 230 km/s is seen, consistent with extended tidal debris from omega Centauri.



قيم البحث

اقرأ أيضاً

We derive relative proper motions of stars in the fields of globular clusters M4, M12, M22, NGC 3201, NGC 6362 and NGC 6752 based on a uniform data set collected between 1997 and 2008. We assign a membership class for each star with a measured proper motion, and show that these membership classes can be successfully used to eliminate field stars from color-magnitude diagrams of the clusters. They also allow for the efficient selection of rare objects such as blue/yellow/red stragglers and stars from the asymptotic giant branch. Tables with proper motions and photometry of over 87000 stars are made publicly available via the Internet.
Recently, Kundu et al (2019) reported that the globular cluster NGC 5024 (M53) possesses five extra-tidal RR Lyrae. In fact, four of them were instead known members of a nearby globular cluster NGC 5053. The status of the remaining extra-tidal RR Lyr ae is controversial depending on the adopted tidal radius of NGC 5024. We have also searched for additional extra-tidal RR Lyrae within an area of $sim8$~deg$^2$ covering both globular clusters. This includes other known RR Lyrae within the search area, as well as stars that fall within the expected range of magnitudes and colors for RR Lyrae (and yet outside the cutoff of 2/3 of the tidal radii of each globular clusters for something to be called extra-tidal) if they were extra-tidal RR Lyrae candidates for NGC 5024 or NGC 5053. Based on the the proper motion information and their locations on the color-magnitude diagram, none of the known RR Lyrae belong to the extra-tidal RR Lyrae of either globular clusters. In the cases where the stars satisfied the magnitude and color ranges of RR Lyrae, analysis of time series data taken from the Zwicky Transient Facility do not reveal periodicities, suggesting that none of these stars are RR Lyrae. We conclude that there are no extra-tidal RR Lyrae associated with either NGC 5024 or NGC 5053 located within our search area.
We present a detailed spectroscopic analysis of horizontal branch stars in the globular cluster NGC 3201. We collected optical (4580-5330 A), high resolution (~34,000), high signal-to-noise ratio (~200) spectra for eleven RR Lyrae stars and one red h orizontal branch star with the multifiber spectrograph M2FS at the 6.5m Magellan telescope at the Las Campanas Observatory. From measured equivalent widths we derived atmospheric parameters and abundance ratios for {alpha} (Mg, Ca, Ti), iron peak (Sc, Cr, Ni, Zn) and s-process (Y) elements. We found that NGC 3201 is a homogeneous, mono-metallic ([Fe/H]=-1.47 +- 0.04), {alpha}-enhanced ([{alpha}/Fe]=0.37 +- 0.04) cluster. The relative abundances of the iron peak and s-process elements were found to be consistent with solar values. In comparison with other large stellar samples, NGC 3201 RR Lyraes have similar chemical enrichment histories as do those of other old (t>10 Gyr) Halo components (globular clusters, red giants, blue and red horizontal branch stars, RR Lyraes). We also provided a new average radial velocity estimate for NGC 3201 by using a template velocity curve to overcome the limit of single epoch measurements of variable stars: Vrad=494 +- 2 km s-1({sigma}=8 km s-1).
With a high value of heliocentric radial velocity, a retrograde orbit, and being suspected to have an extragalactic origin, NGC 3201 is an interesting globular cluster for kinematical studies. Our purpose is to calculate the relative proper motions ( PMs) and membership probability for the stars in the wide region of globular cluster NGC 3201. Proper motion based membership probabilities are used to isolate the cluster sample from the field stars. The membership catalogue will help address the question of chemical inhomogeneity in the cluster. Archive CCD data taken with a wide-field imager (WFI) mounted on the ESO 2.2m telescope are reduced using the high-precision astrometric software developed by Anderson et al. for the WFI images. The epoch gap between the two observational runs is $sim$14.3 years. To standardize the $BVI$ photometry, Stetsons secondary standard stars are used. The CCD data with an epoch gap of $sim$14.3 years enables us to decontaminate the cluster stars from field stars efficiently. The median precision of PMs is better than $sim$0.8 mas~yr$^{-1}$ for stars having $V<$18 mag that increases up to $sim$1.5 mas~yr$^{-1}$ for stars with $18<V<20$ mag. Kinematic membership probabilities are calculated using proper motions for stars brighter than $Vsim$20 mag. An electronic catalogue of positions, relative PMs, $BVI$ magnitudes and membership probabilities in $sim$19.7$times$17 arcmin$^2$ region of NGC 3201 is presented. We use our membership catalogue to identify probable cluster members among the known variables and $X$-ray sources in the direction of NGC 3201.
We present radial velocities and chemical abundances for red giant branch stars in the Galactic bulge globular clusters NGC 6342 and NGC 6366. The velocities and abundances are based on measurements of high resolution (R > 20,000) spectra obtained wi th the MMT-Hectochelle and WIYN-Hydra spectrographs. We find that NGC 6342 has a heliocentric radial velocity of +112.5 km/s (sigma = 8.6 km/s), NGC 6366 has a heliocentric radial velocity of -122.3 km/s (sigma = 1.5 km/s), and that both clusters have nearly identical metallicities ([Fe/H] ~ -0.55). NGC 6366 shows evidence of a moderately extended O-Na anti-correlation, but more data are needed for NGC 6342 to determine if this cluster also exhibits the typical O-Na relation likely found in all other Galactic globular clusters. The two clusters are distinguished from similar metallicity field stars as having larger [Na/Fe] spreads and enhanced [La/Fe] ratios, but we find that NGC 6342 and NGC 6366 display alpha and Fe-peak element abundance patterns that are typical of other metal-rich ([Fe/H] > -1) inner Galaxy clusters. However, the median [La/Fe] abundance may vary from cluster-to-cluster.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا