ﻻ يوجد ملخص باللغة العربية
We evaluated the emission of a low-mass particle in the system (atomic) transition for the case when the particle Lorentz factor is $10^{18}$ and found that the angular distribution of emission in the laboratory inertial system is strongly affected by the directional variation of the maximum attainable speed of the particle. We show that for a photon mass consistent with the experimental limit, $m_{ph} leq 10^{-18}$ eV, due to the experimentally known absence of a significant anisotropy of the photon emission by an atom, the anisotropy of the one-way speed of light, $Delta c_1/c$, is $10^{-37}$ or less. This is many orders of magnitude smaller than previously reported and the limit becomes even stronger for the lower mass of the photon.
We report here the first experimental result for the anisotropy of the one-way maximum attainable speed of the electron, $vec{Delta c_{1,e}}$, obtained via the study of a sidereal time dependence of a difference between the electron and positron beam
Radiation pressure acceleration (RPA) is a highly efficient mechanism of laser-driven ion acceleration, with with near complete transfer of the laser energy to the ions in the relativistic regime. However, there is a fundamental limit on the maximum
A solid object can be coated by a nonwetting liquid since a receding contact line cannot exceed a critical speed. We theoretically investigate this forced wetting transition for axisymmetric menisci on fibers of varying radii. First, we use a matched
Radiation Pressure Acceleration relies on high intensity laser pulse interacting with solid target to obtain high maximum energy, quasimonoenergetic ion beams. Either extremely high power laser pulses or tight focusing of laser radiation is required.
From the observed results, we deduced that the mass of the neutrino is about 10^(-1) eV and the mass of the fourth stable elementary particle (delta) is about 10^(0) eV. While neutrino is related to electro-weak field, the fourth stable elementary pa