ﻻ يوجد ملخص باللغة العربية
A solid object can be coated by a nonwetting liquid since a receding contact line cannot exceed a critical speed. We theoretically investigate this forced wetting transition for axisymmetric menisci on fibers of varying radii. First, we use a matched asymptotic expansion and derive the maximum speed of dewetting. For all radii we find the maximum speed occurs at vanishing apparent contact angle. To further investigate the transition we numerically determine the bifurcation diagram for steady menisci. It is found that the meniscus profiles on thick fibers are smooth, even when there is a film deposited between the bath and the contact line, while profiles on thin fibers exhibit strong oscillations. We discuss how this could lead to different experimental scenarios of film deposition.
In many macroscopic dynamic wetting problems, it is assumed that the macroscopic interface is quasistatic, and the dissipation appears only in the region close to the contact line. When approaching the moving contact line, a microscopic mechanism is
The dynamics of receding contact lines is investigated experimentally through controlled perturbations of a meniscus in a dip coating experiment. We first characterize stationary menisci and their breakdown at the coating transition. It is then shown
The relaxation of a dewetting contact line is investigated theoretically in the so-called Landau-Levich geometry in which a vertical solid plate is withdrawn from a bath of partially wetting liquid. The study is performed in the framework of lubricat
We study numerically the effect of thermal fluctuations and of variable fluid-substrate interactions on the spontaneous dewetting of thin liquid films. To this aim, we use a recently developed lattice Boltzmann method for thin liquid film flows, equi
A lattice Boltzmann model is considered in which the speed of sound can be varied independently of the other parameters. The range over which the speed of sound can be varied is investigated and good agreement is found between simulations and theory.