ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum black holes in bootstrapped Newtonian gravity

76   0   0.0 ( 0 )
 نشر من قبل Roberto Casadio
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyse the classical configurations of a bootstrapped Newtonian potential generated by homogeneous spherically symmetric sources in terms of a quantum coherent state. We first compute how the mass and mean wavelength of these solutions scale in terms of the number of quanta in the coherent state. We then note that the classical relation between the ADM mass and the proper mass of the source naturally gives rise to a Generalised Uncertainty Principle for the size of the gravitational radius in the quantum theory. Consistency of the mass and wavelength scalings with this GUP requires the compactness remains at most of order one even for black holes, and the corpuscular predictions are thus recovered, with the quantised horizon area expressed in terms of the number of quanta in the coherent state. Our findings could be useful for analysing the classicalization of gravity in the presence of matter and the avoidance of singularities in the gravitational collapse of compact sources.



قيم البحث

اقرأ أيضاً

We study equilibrium configurations of a homogenous ball of matter in a bootstrapped description of gravity which includes a gravitational self-interaction term beyond the Newtonian coupling. Both matter density and pressure are accounted for as sour ces of the gravitational potential for test particles. Unlike the general relativistic case, no Buchdahl limit is found and the pressure can in principle support a star of arbitrarily large compactness. By defining the horizon as the location where the escape velocity of test particles equals the speed of light, like in Newtonian gravity, we find a minimum value of the compactness for which this occurs. The solutions for the gravitational potential here found could effectively describe the interior of macroscopic black holes in the quantum theory, as well as predict consequent deviations from general relativity in the strong field regime of very compact objects.
We hereby derive the Newtonian metric potentials for the fourth-derivative gravity including the one-loop logarithm quantum corrections. It is explicitly shown that the behavior of the modified Newtonian potential near the origin is improved respect to the classical one, but this is not enough to remove the curvature singularity in $r=0$. Our result is grounded on a rigorous proof based on numerical and analytic computations.
In this work, we consider that in energy scales greater than the Planck energy, the geometry, fundamental physical constants, as charge, mass, speed of light and Newtonian constant of gravitation, and matter fields will depend on the scale. This type of theory is known as Rainbow Gravity. We coupled the nonlinear electrodynamics to the Rainbow Gravity, defining a new mass function $M(r,epsilon)$, such that we may formulate new classes of spherically symmetric regular black hole solutions, where the curvature invariants are well-behaved in all spacetime. The main differences between the General Relativity and our results in the the Rainbow gravity are: a) The intensity of the electric field is inversely proportional to the energy scale. The higher the energy scale, the lower the electric field intensity; b) the region where the strong energy condition (SEC) is violated decrease as the energy scale increase. The higher the energy scale, closer to the radial coordinate origin SEC is violated.
We systematically study the field equations of $f(mathbb Q)$ gravity for spherically symmetric and stationary metric-affine spacetimes. Such spacetimes are described by a metric as well as a flat and torsionless affine connection. In the Symmetric Te leparallel Equivalent of GR (STEGR), the connection is pure gauge and hence unphysical. However, in the non-linear extension $f(Q)$, it is promoted to a dynamical field which changes the physics. Starting from a general metric-affine geometry, we construct the most general static and spherically symmetric forms of the metric and the affine connection. We then use these symmetry reduced geometric objects to prove that the field equations of $f(Q)$ gravity admit GR solutions as well as beyond-GR solutions, contrary to what has been claimed in the literature. We formulate precise criteria, under which conditions it is possible to obtain GR solutions and under which conditions it is possible to obtain beyond-GR solutions. We subsequently construct several perturbative corrections to the Schwarzschild solution for different choices of $f(Q)$, which in particular include a hair stemming from the now dynamical affine connection. We also present an exact beyond-GR vacuum solution. Lastly, we apply this method of constructing spherically symmetric and stationary solutions to $f(T)$ gravity, which reproduces similar solutions but without a dynamical connection.
We construct slowly rotating black-hole solutions of Einsteinian cubic gravity (ECG) in four dimensions with flat and AdS asymptotes. At leading order in the rotation parameter, the only modification with respect to the static case is the appearance of a non-vanishing $g_{tphi}$ component. Similarly to the static case, the order of the equation determining such component can be reduced twice, giving rise to a second-order differential equation which can be easily solved numerically as a function of the ECG coupling. We study how various physical properties of the solutions are modified with respect to the Einstein gravity case, including its angular velocity, photon sphere, photon rings, shadow, and innermost stable circular orbits (in the case of timelike geodesics).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا