ترغب بنشر مسار تعليمي؟ اضغط هنا

Photometric light curve solutions of three ultra-short period eclipsing binaries

101   0   0.0 ( 0 )
 نشر من قبل Lester Fox-Machado Dr
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of our study of the eclipsing binary systems CSS J112237.1+395219, LINEAR 1286561 and LINEAR 2602707 based on new CCD $B$, $V$, $R_c$ and $I_c$ complete light curves. The ultra-short period nature of the stars citep{Drake2014} is confirmed and the systems periods are revised. The light curves were modelled using the 2005 version of the Wilson-Devinney code. When necessary, cool spots on the surface of the primary component were introduced to account for asymmetries in the light curves. As a result, we found that CSS J112237.1+395219 is a W UMa type contact binary system belonging to W subclass with a mass ratio of $q=1.61$ and a shallow degree of contact of 14.8% where the primary component is hotter than the secondary one by $500K$. LINEAR 1286561 and LINEAR 2602707 are detached binary systems with mass ratios $q=3.467$ and $q=0.987$ respectively. These detached systems are low-mass M-type eclipsing binaries of similar temperatures. The marginal contact, the fill-out factor and the temperature difference between components of CSS J112237.1+395219 suggest that this system may be at a key evolutionary state predicted by the Thermal Relaxation Oscillation theory (TRO). From the estimated absolute parameters we conclude that our systems share common properties with others ultra-short period binaries.



قيم البحث

اقرأ أيضاً

Photometric observations in V and I bands and low-dispersion spectra of ten ultrashort-period binaries (NSVS 2175434, NSVS 2607629, NSVS 5038135, NSVS 8040227, NSVS 9747584, NSVS 4876238, ASAS 071829-0336.7, SWASP 074658.62+224448.5, NSVS 2729229, NS VS 10632802) are presented. One of them, NSVS 2729229, is newly discovered target. The results from modeling and analysis of our observations revealed that: (i) Eight targets have overcontact configurations with considerable fillout factor (up to 0.5) while NSVS 4876238 and ASAS 0718-03 have almost contact configurations; (ii) NSVS 4876238 is rare ultrashort-period binary of detached type; (iii) all stellar components are late dwarfs; (iv) the temperature difference of the components of each target does not exceed 400 K; (v) NSVS 2175434 and SWASP 074658.62+224448.5 exhibit total eclipses and their parameters could be assumed as well-determined; (v) NSVS 2729229 shows emission in the H_{alpha} line. Masses, radii and luminosities of the stellar components were estimated by the empirical relation period, orbital axis for short- and ultrashort-period binaries. We found linear relations mass-luminosity and mass-radius for the stellar components of our targets.
We report on the discovery of four ultra-short period (P<0.18 days) eclipsing M-dwarf binaries in the WFCAM Transit Survey. Their orbital periods are significantly shorter than of any other known main-sequence binary system, and are all significantly below the sharp period cut-off at P~0.22 days as seen in binaries of earlier type stars. The shortest-period binary consists of two M4 type stars in a P=0.112 day orbit. The binaries are discovered as part of an extensive search for short-period eclipsing systems in over 260,000 stellar lightcurves, including over 10,000 M-dwarfs down to J=18 mag, yielding 25 binaries with P<0.23 days. In a popular paradigm, the evolution of short period binaries of cool main-sequence stars is driven by loss of angular momentum through magnetised winds. In this scheme, the observed P~0.22 day period cut-off is explained as being due to timescales that are too long for lower-mass binaries to decay into tighter orbits. Our discovery of low-mass binaries with significantly shorter orbits implies that either these timescales have been overestimated for M-dwarfs, e.g. due to a higher effective magnetic activity, or that the mechanism for forming these tight M-dwarf binaries is different from that of earlier type main-sequence stars.
We carried out high-precision photometric observations of three eclipsing ultrashortperiod contact binaries (USPCBs). Theoretical models were fitted to the light-curves by means of the Wilson-Devinney code. The solutions suggest that the three target s have evolved to a contact phase. The photometric results are as follows: a) 1SWASP J030749.87-365201.7, q=0.439pm0.003, f=0.0pm3.6%; b) 1SWASP J213252.93-441822.6, q=0.560pm0.003, f=14.2pm1.9%; c) 1SWASP J200059.78+054408.9, q=0.436pm0.008, f=58.4pm1.8%. The light curves show OConnell effects, which can be modeled by assumed cool spots. The cool spots models are strongly supported by the night-to-night variations in the I-band light curves of 1SWASP J030749.87-365201.7. For a comparative study, we collected the whole set of 28 well-studied USPCBs with P < 0.24 day. Thus, we found that most of them (17 of 28) are in shallow contact (i.e. fill-out factors f<20%). Only 4 USPCBs have deep fill-out factors (i.e. f>50%). Generally, contact binaries with deep fill-out factors are going to merge, but it is believed that USPCBs have just evolved to a contact phase. Hence, the deep USPCB 1SWASP J200059.78+054408.9 seems to be a contradiction, making it very interesting. Particularly, 1SWASP J030749.87-365201.7 is a zero contact binary within thermal equilibrium, implying that it should be a turn-off sample as predicted by the thermal relaxation oscillation (TRO) theory.
We investigate the properties of 367 ultra-short period binary candidates selected from 31,000 sources recently identified from Catalina Surveys data. Based on light curve morphology, along with WISE, SDSS and GALEX multi-colour photometry, we identi fy two distinct groups of binaries with periods below the 0.22 day contact binary minimum. In contrast to most recent work, we spectroscopically confirm the existence of M-dwarf+M-dwarf contact binary systems. By measuring the radial velocity variations for five of the shortest-period systems, we find examples of rare cool-white dwarf+M-dwarf binaries. Only a few such systems are currently known. Unlike warmer white dwarf systems, their UV flux and their optical colours and spectra are dominated by the M-dwarf companion. We contrast our discoveries with previous photometrically-selected ultra-short period contact binary candidates, and highlight the ongoing need for confirmation using spectra and associated radial velocity measurements. Overall, our analysis increases the number of ultra-short period contact binary candidates by more than an order of magnitude.
Detached eclipsing binaries are remarkable systems to provide accurate fundamental stellar parameters. The fundamental stellar parameters and the metallicity values of stellar systems are needed to deeply understand the stellar evolution and formatio n. In this study, we focus on the detailed spectroscopic and photometric studies of three detached eclipsing binary systems, V372,And, V2080,Cyg, and CF,Lyn to obtain their accurate stellar, atmospheric parameters,and chemical compositions. An analysis of light and radial velocity curves was carried out to derive the orbital and stellar parameters. The disentangled spectra of component stars were obtained for the spectroscopic analysis. Final teff, logg, $xi$, vsini, parameters and the element abundances of component stars were derived by using the spectrum synthesis method. The fundamental stellar parameters were determined with a high certainty for V372,And, V2080,Cyg ($sim$$1-2$%) and with an accuracy for CF,Lyn ($sim$$2-6$%). The evolutionary status of the systems was examined and their ages were obtained. It was found that the component stars of V2080,Cyg have similar iron abundance which is slightly lower than solar iron abundance. Additionally, we showed that the primary component of CF,Lyn exhibits a non-spherical shape with its 80% Roche lobe filling factor. It could be estimated that CF,Lyn will start its first Roche overflow in the next 0.02,Gyr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا