ﻻ يوجد ملخص باللغة العربية
A space discretization of an integrable long wave-short wave interaction model, called the Yajima-Oikawa system, was proposed in the recent paper arXiv:1509.06996 using the Hirota bilinear method (see also https://link.aps.org/doi/10.1103/PhysRevE.91.062902). In this paper, we propose a Lax-pair representation for the discrete Yajima-Oikawa system as well as its multicomponent generalization also considered in arXiv:1509.06996 and prove that it has an infinite number of conservation laws. We also derive the next higher flow of the discrete Yajima-Oikawa hierarchy, which generalizes a modified version of the Volterra lattice. Relations to two integrable discrete nonlinear Schrodinger hierarchies, the Ablowitz-Ladik hierarchy and the Konopelchenko-Chudnovsky hierarchy, are clarified.
We propose a new integrable generalization of the Toda lattice wherein the original Flaschka-Manakov variables are coupled to newly introduced dependent variables; the general case wherein the additional dependent variables are vector-valued is consi
The integrable Davey-Stewartson system is a linear combination of the two elementary flows that commute: $mathrm{i} q_{t_1} + q_{xx} + 2qpartial_y^{-1}partial_x (|q|^2) =0$ and $mathrm{i} q_{t_2} + q_{yy} + 2qpartial_x^{-1}partial_y (|q|^2) =0$. In t
This is a continuation of our previous paper arXiv:1904.07924, which is devoted to the construction of integrable semi-discretizations of the Davey-Stewartson system and a $(2+1)$-dimensional Yajima-Oikawa system; in this series of papers, we refer t
General high-order rogue wave solutions for the (1+1)-dimensional Yajima-Oikawa (YO) system are derived by using Hirotas bilinear method and the KP-hierarchy reduction technique. These rogue wave solutions are presented in terms of determinants in wh
R. Hirota and K. Kimura discovered integrable discretizations of the Euler and the Lagrange tops, given by birational maps. Their method is a specialization to the integrable context of a general discretization scheme introduced by W. Kahan and appli