ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotic independence of spiked eigenvalues and linear spectral statistics for large sample covariance matrices

98   0   0.0 ( 0 )
 نشر من قبل Guangming Pan
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider general high-dimensional spiked sample covariance models and show that their leading sample spiked eigenvalues and their linear spectral statistics are asymptotically independent when the sample size and dimension are proportional to each other. As a byproduct, we also establish the central limit theorem of the leading sample spiked eigenvalues by removing the block diagonal assumption on the population covariance matrix, which is commonly needed in the literature. Moreover, we propose consistent estimators of the $L_4$ norm of the spiked population eigenvectors. Based on these results, we develop a new statistic to test the equality of two spiked population covariance matrices. Numerical studies show that the new test procedure is more powerful than some existing methods.



قيم البحث

اقرأ أيضاً

We study the asymptotic distributions of the spiked eigenvalues and the largest nonspiked eigenvalue of the sample covariance matrix under a general covariance matrix model with divergent spiked eigenvalues, while the other eigenvalues are bounded bu t otherwise arbitrary. The limiting normal distribution for the spiked sample eigenvalues is established. It has distinct features that the asymptotic mean relies on not only the population spikes but also the nonspikes and that the asymptotic variance in general depends on the population eigenvectors. In addition, the limiting Tracy-Widom law for the largest nonspiked sample eigenvalue is obtained. Estimation of the number of spikes and the convergence of the leading eigenvectors are also considered. The results hold even when the number of the spikes diverges. As a key technical tool, we develop a Central Limit Theorem for a type of random quadratic forms where the random vectors and random matrices involved are dependent. This result can be of independent interest.
215 - Qinwen Wang , Jianfeng Yao 2015
Consider two $p$-variate populations, not necessarily Gaussian, with covariance matrices $Sigma_1$ and $Sigma_2$, respectively, and let $S_1$ and $S_2$ be the sample covariances matrices from samples of the populations with degrees of freedom $T$ and $n$, respectively. When the difference $Delta$ between $Sigma_1$ and $Sigma_2$ is of small rank compared to $p,T$ and $n$, the Fisher matrix $F=S_2^{-1}S_1$ is called a {em spiked Fisher matrix}. When $p,T$ and $n$ grow to infinity proportionally, we establish a phase transition for the extreme eigenvalues of $F$: when the eigenvalues of $Delta$ ({em spikes}) are above (or under) a critical value, the associated extreme eigenvalues of the Fisher matrix will converge to some point outside the support of the global limit (LSD) of other eigenvalues; otherwise, they will converge to the edge points of the LSD. Furthermore, we derive central limit theorems for these extreme eigenvalues of the spiked Fisher matrix. The limiting distributions are found to be Gaussian if and only if the corresponding population spike eigenvalues in $Delta$ are {em simple}. Numerical examples are provided to demonstrate the finite sample performance of the results. In addition to classical applications of a Fisher matrix in high-dimensional data analysis, we propose a new method for the detection of signals allowing an arbitrary covariance structure of the noise. Simulation experiments are conducted to illustrate the performance of this detector.
In this paper, we study the asymptotic behavior of the extreme eigenvalues and eigenvectors of the high dimensional spiked sample covariance matrices, in the supercritical case when a reliable detection of spikes is possible. Especially, we derive th e joint distribution of the extreme eigenvalues and the generalized components of the associated eigenvectors, i.e., the projections of the eigenvectors onto arbitrary given direction, assuming that the dimension and sample size are comparably large. In general, the joint distribution is given in terms of linear combinations of finitely many Gaussian and Chi-square variables, with parameters depending on the projection direction and the spikes. Our assumption on the spikes is fully general. First, the strengths of spikes are only required to be slightly above the critical threshold and no upper bound on the strengths is needed. Second, multiple spikes, i.e., spikes with the same strength, are allowed. Third, no structural assumption is imposed on the spikes. Thanks to the general setting, we can then apply the results to various high dimensional statistical hypothesis testing problems involving both the eigenvalues and eigenvectors. Specifically, we propose accurate and powerful statistics to conduct hypothesis testing on the principal components. These statistics are data-dependent and adaptive to the underlying true spikes. Numerical simulations also confirm the accuracy and powerfulness of our proposed statistics and illustrate significantly better performance compared to the existing methods in the literature. Especially, our methods are accurate and powerful even when either the spikes are small or the dimension is large.
Let $mathbf{X}_n=(x_{ij})$ be a $k times n$ data matrix with complex-valued, independent and standardized entries satisfying a Lindeberg-type moment condition. We consider simultaneously $R$ sample covariance matrices $mathbf{B}_{nr}=frac1n mathbf{Q} _r mathbf{X}_n mathbf{X}_n^*mathbf{Q}_r^top,~1le rle R$, where the $mathbf{Q}_{r}$s are nonrandom real matrices with common dimensions $ptimes k~(kgeq p)$. Assuming that both the dimension $p$ and the sample size $n$ grow to infinity, the limiting distributions of the eigenvalues of the matrices ${mathbf{B}_{nr}}$ are identified, and as the main result of the paper, we establish a joint central limit theorem for linear spectral statistics of the $R$ matrices ${mathbf{B}_{nr}}$. Next, this new CLT is applied to the problem of testing a high dimensional white noise in time series modelling. In experiments the derived test has a controlled size and is significantly faster than the classical permutation test, though it does have lower power. This application highlights the necessity of such joint CLT in the presence of several dependent sample covariance matrices. In contrast, all the existing works on CLT for linear spectral statistics of large sample covariance matrices deal with a single sample covariance matrix ($R=1$).
Sample correlation matrices are employed ubiquitously in statistics. However, quite surprisingly, little is known about their asymptotic spectral properties for high-dimensional data, particularly beyond the case of null models for which the data is assumed independent. Here, considering the popular class of spiked models, we apply random matrix theory to derive asymptotic first-order and distributional results for both the leading eigenvalues and eigenvectors of sample correlation matrices. These results are obtained under high-dimensional settings for which the number of samples n and variables p approach infinity, with p/n tending to a constant. To first order, the spectral properties of sample correlation matrices are seen to coincide with those of sample covariance matrices; however their asymptotic distributions can differ significantly, with fluctuations of both the sample eigenvalues and eigenvectors often being remarkably smaller than those of their sample covariance counterparts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا