ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological zero-line mode of bilayer graphene with Rashba spin-orbital coupling and staggered sublattice potentials

96   0   0.0 ( 0 )
 نشر من قبل Ma Luo
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Domain wall in bilayer graphene with Rashba spin-orbital coupling and staggered sublattice potentials, at the interface between two domains with different gated voltages, is studied. Varying type of zero-line modes are identified, including zero-line mode with pure spin filtering effect. The Y-shape current partition at the junction among three different domains are proposed.



قيم البحث

اقرأ أيضاً

107 - Ma Luo , Zhibing Li 2018
Gated heterostructures containing bilayer graphene with staggered sublattice potentials are investigated by tight binding model with Rashba spin-orbital coupling and Hubbard interaction. The topological phase diagrams depend on the combinations of su bstrates and the Hubbard interaction. The presence of the staggered sublattice potential favor the topological phase transition with small Rashba spin-orbital coupling strength. The presence of the Hubbard interaction modified the topological phase boundaries, increasing the minimal spin-orbital coupling strength for topological phase transition. A phase space of topological semi-metal with indirect band gap is identified in the non-interacting systems. For the bilayer graphene with different staggered sublattice potentials in the two layers, the conditions for the zigzag nanoribbons to host edge polarized chiral edge states are discussed. The conditions require moderate or vanishing Rashba spin-orbital coupling strength, as well as proper range of the gate voltage. The conditions for the systems with and without the Hubbard interaction are compared. The edge polarization can be controlled by the gate voltage.
We theoretically investigate a folded bilayer graphene structure as an experimentally realizable platform to produce the one-dimensional topological zero-line modes. We demonstrate that the folded bilayer graphene under an external gate potential ena bles tunable topologically conducting channels to be formed in the folded region, and that a perpendicular magnetic field can be used to enhance the conducting when external impurities are present. We also show experimentally that our proposed folded bilayer graphene structure can be fabricated in a controllable manner. Our proposed system greatly simplifies the technical difficulty in the original proposal by considering a planar bilayer graphene (i.e., precisely manipulating the alignment between vertical and lateral gates on bilayer graphene), laying out a new strategy in designing practical low-power electronics by utilizing the gate induced topological conducting channels.
We theoretically study three-dimensional topological semimetals (TSMs) with nodal lines protected by crystalline symmetries. Compared with TSMs with point nodes, e.g., Weyl semimetals and Dirac semimetals, where the conduction and the valence bands t ouch at discrete points, in these new TSMs the two bands cross at closed lines in the Brillouin zone. We propose two new classes of symmetry protected nodal lines in the absence and in the presence of spin-orbital coupling (SOC), respectively. In the former, we discuss nodal lines that are protected by the combination of inversion symmetry and time-reversal symmetry; yet unlike any previously studied nodal lines in the same symmetry class, each nodal line has a $Z_2$ monopole charge and can only be created (annihilated) in pairs. In the second class, with SOC, we show that a nonsymmorphic symmetry (screw axis) protects a four-band crossing nodal line in systems having both inversion and time-reversal symmetries.
Within an effective Dirac theory the low-energy dispersions of monolayer graphene in the presence of Rashba spin-orbit coupling and spin-degenerate bilayer graphene are described by formally identical expressions. We explore implications of this corr espondence for transport by choosing chiral tunneling through pn and pnp junctions as a concrete example. A real-space Greens function formalism based on a tight-binding model is adopted to perform the ballistic transport calculations, which cover and confirm previous theoretical results based on the Dirac theory. Chiral tunneling in monolayer graphene in the presence of Rashba coupling is shown to indeed behave like in bilayer graphene. Combined effects of a forbidden normal transmission and spin separation are observed within the single-band n to p transmission regime. The former comes from real-spin conservation, in analogy with pseudospin conservation in bilayer graphene, while the latter arises from the intrinsic spin-Hall mechanism of the Rashba coupling.
We study the effect of anisotropy of the Rashba coupling on the extrinsic spin Hall effect due to spin-orbit active adatoms on graphene. In addition to the intrinsic spin-orbit coupling, a generalized anisotropic Rashba coupling arising from the brea kdown of both mirror and hexagonal symmetries of pristine graphene is considered. We find that Rashba anisotropy can strongly modify the dependence of the spin Hall angle on carrier concentration. Our model provides a simple and general description of the skew scattering mechanism due to the spin-orbit coupling that is induced by proximity to large adatom clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا