ﻻ يوجد ملخص باللغة العربية
${Z}_2$-Yukawa-QCD models are a minimalistic model class with a Yukawa and a QCD-like gauge sector that exhibits a regime with asymptotic freedom in all its marginal couplings in standard perturbation theory. We discover the existence of further asymptotically free trajectories for these models by exploiting generalized boundary conditions. We construct such trajectories as quasi-fixed points for the Higgs potential within different approximation schemes. We substantiate our findings first in an effective-field-theory approach, and obtain a comprehensive picture using the functional renormalization group. We infer the existence of scaling solutions also by means of a weak-Yukawa-coupling expansion in the ultraviolet. In the same regime, we discuss the stability of the quasi-fixed point solutions for large field amplitudes. We provide further evidence for such asymptotically free theories by numerical studies using pseudo-spectral and shooting methods.
We study four-dimensional gauge theories coupled to fermions in the fundamental and meson-like scalars. All requisite beta functions are provided for general gauge group and fermion representation. In the regime where asymptotic freedom is absent, we
We propose matter wavefunctions on resolutions of $T^2/mathbb{Z}_N$ singularities with constant magnetic fluxes. In the blow-down limit, the obtained wavefunctions of chiral zero-modes result in those on the magnetized $T^2/mathbb{Z}_N$ orbifold mode
The 1/Nc expansion is formulated for the baryon wave function in terms of a specially constructed generating functional. The leading order of this 1/Nc expansion is universal for all low-lying baryons [including the O(1/Nc) and O(Nc^0) excited resona
We argue that global F-theory compactifications to four dimensions generally exhibit higher rank Yukawa matrices from multiple geometric contributions known as Yukawa points. The holomorphic couplings furthermore have large hierarchies for generic co
We provide strong evidence that the asymptotically free (1+1)-dimensional non-linear O(3) sigma model can be regularized using a quantum lattice Hamiltonian, referred to as the Heisenberg-comb, that acts on a Hilbert space with only two qubits per sp