ﻻ يوجد ملخص باللغة العربية
We are given an integer $d$, a graph $G=(V,E)$, and a uniformly random embedding $f : V rightarrow {0,1}^d$ of the vertices. We are interested in the probability that $G$ can be realized by a scaled Euclidean norm on $mathbb{R}^d$, in the sense that there exists a non-negative scaling $w in mathbb{R}^d$ and a real threshold $theta > 0$ so that [ (u,v) in E qquad text{if and only if} qquad Vert f(u) - f(v) Vert_w^2 < theta,, ] where $| x |_w^2 = sum_i w_i x_i^2$. These constraints are similar to those found in the Euclidean minimum spanning tree (EMST) realization problem. A crucial difference is that the realization map is (partially) determined by the random variable $f$. In this paper, we consider embeddings $f : V rightarrow { x, y}^d$ for arbitrary $x, y in mathbb{R}$. We prove that arbitrary trees can be realized with high probability when $d = Omega(n log n)$. We prove an analogous result for graphs parametrized by the arboricity: specifically, we show that an arbitrary graph $G$ with arboricity $a$ can be realized with high probability when $d = Omega(n a^2 log n)$. Additionally, if $r$ is the minimum effective resistance of the edges, $G$ can be realized with high probability when $d=Omegaleft((n/r^2)log nright)$. Next, we show that it is necessary to have $d geq binom{n}{2}/6$ to realize random graphs, or $d geq n/2$ to realize random spanning trees of the complete graph. This is true even if we permit an arbitrary embedding $f : V rightarrow { x, y}^d$ for any $x, y in mathbb{R}$ or negative weights. Along the way, we prove a probabilistic analog of Radons theorem for convex sets in ${0,1}^d$. Our tree-realization result can complement existing results on statistical inference for gene expression data which involves realizing a tree, such as [GJP15].
The shift-enabled property of an underlying graph is essential in designing distributed filters. This article discusses when a random graph is shift-enabled. In particular, popular graph models ER, WS, BA random graph are used, weighted and unweighte
Random factor graphs provide a powerful framework for the study of inference problems such as decoding problems or the stochastic block model. Information-theoretically the key quantity of interest is the mutual information between the observed facto
We study random walks on the giant component of the ErdH{o}s-Renyi random graph ${cal G}(n,p)$ where $p=lambda/n$ for $lambda>1$ fixed. The mixing time from a worst starting point was shown by Fountoulakis and Reed, and independently by Benjamini, Ko
Signed graphs are graphs with signed edges. They are commonly used to represent positive and negative relationships in social networks. While balance theory and clusterizable graphs deal with signed graphs to represent social interactions, recent emp
We consider the proportion of generalized visible lattice points in the plane visited by random walkers. Our work concerns the visible lattice points in random walks in three aspects: (1) generalized visibility along curves; (2) one random walker vis