ﻻ يوجد ملخص باللغة العربية
Grovers algorithm confers on quantum computers a quadratic advantage over classical computers for searching in an arbitrary data set, a scenario that describes Bitcoin mining. It has previously been argued that the only side-effect of quantum mining would be an increased difficulty. In this work, we argue that a crucial argument in the analysis of Bitcoin security breaks down when quantum mining is performed. Classically, a Bitcoin fork occurs rarely, i.e., when two miners find a block almost simultaneously, due to propagation time effects. The situation differs dramatically when quantum miners use Grovers algorithm, which repeatedly applies a procedure called a Grover iteration. The chances of finding a block grow quadratically with the number of Grover iterations applied. Crucially, a miner does not have to choose how many iterations to apply in advance. Suppose Alice receives Bobs new block. To maximize her revenue, she should stop and measure her state immediately in the hopes that her block (rather than Bobs) will become part of the longest chain. The strong correlation between the miners actions and the fact that they all measure their states at the same time may lead to more forks -- which is known to be a security risk for Bitcoin. We propose a mechanism that, we conjecture, will prevent this form of quantum mining, thereby circumventing the high rate of forks.
We survey recent results on the mathematical stability of Bitcoin protocol. Profitability and probability of a double spend are estimated in closed form with classical special functions. The stability of Bitcoin mining rules is analyzed and several t
Investors tend to sell their winning investments and hold onto their losers. This phenomenon, known as the emph{disposition effect} in the field of behavioural finance, is well-known and its prevalence has been shown in a number of existing markets.
We present the first compositional, incremental static analysis for detecting memory-safety and information leakage vulnerabilities in C-like programs. To do so, we develop the first under-approximate relational program logics for reasoning about inf
Miners play a key role in cryptocurrencies such as Bitcoin: they invest substantial computational resources in processing transactions and minting new currency units. It is well known that an attacker controlling more than half of the networks mining
We demonstrate the first practical off-path time shifting attacks against NTP as well as against Man-in-the-Middle (MitM) secure Chronos-enhanced NTP. Our attacks exploit the insecurity of DNS allowing us to redirect the NTP clients to attacker contr