ترغب بنشر مسار تعليمي؟ اضغط هنا

Spiky Strings in AdS(4) X CP**3 with Neveu-Schwarz Flux

130   0   0.0 ( 0 )
 نشر من قبل Sachin Jain
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study general rotating string solution in the AdS(4) X CP**3 background with a B_NS holonomy turned on over ${bf CP}^1$ $subset $ $ {bf CP}^3$. We find the giant magnon and single spike solutions for the string moving in this background corresponding to open spin chain. We calculate the corresponding dispersion relation among various conserved charges for both the cases. We further study the finite size effect on both the giant magnon and single spike solutions.



قيم البحث

اقرأ أيضاً

We study a giant magnon and a spike solution for the string rotating on AdS(4) X CP**3 geometry. We consider rigid rotating fundamental string in the SU(2) X SU(2) sector inside the CP**3 and find out the general form of all the conserved charges. We find out the dispersion relation corresponding to both the known giant magnon and the new spike solutions. We further study the finite size correction in both cases.
We study superstrings on AdS_3 x S^3 x T^4 supported by a combination of Ramond-Ramond and Neveu-Schwarz-Neveu-Schwarz three form fluxes, and construct a set of finite-gap equations that describe the classical string spectrum. Using the recently prop osed all-loop S-matrix we write down the all-loop Bethe ansatz equations for the massive sector. In the thermodynamic limit the Bethe ansatz reproduces the finite-gap equations. As part of this derivation we propose expressions for the leading order dressing phases. These phases differ from the well-known Arutyunov-Frolov-Staudacher phase that appears in the pure Ramond-Ramond case. We also consider the one-loop quantization of the algebraic curve and determine the one-loop corrections to the dressing phases. Finally we consider some classical string solutions including finite size giant magnons and circular strings.
We study the Wilson loops and defects in the three dimensional QFT from the D-branes in the AdS(4) x CP**3 geometry. We find out explicit D-brane configurations in the bulk which correspond to both straight and circular Wilson lines extended to the b oundary of AdS(4). We analyze critically the role of boundary contributions to the D2-branes with various topology and to the fundamental string actions.
We use Dirac-Born-Infeld action to study the spinning D-string in $AdS_3 $ background in the presence of both NS-NS and RR fluxes. We compute the scaling relation between the energy (E) and spin (S) in the `long string limit. The energy of these spik y string is found to be a function of spin with the leading logarithmic behaviour and the scaling relation appears to be independent of the amount of flux present. We further discuss folded D-string solutions in $AdS_3$ background with pure NS-NS and R-R fluxes.
Perturbations of a class of semiclassical spiky strings in three dimensional Anti-de Sitter (AdS) spacetime, are investigated using the well-known Jacobi equations for small, normal deformations of an embedded timelike surface. We show that the equat ion for the perturbation scalar which governs the behaviour of such small deformations, is a special case of the well-known Darboux-Treibich-Verdier (DTV) equation. The eigenvalues and eigensolutions of the DTV equation for our case are obtained by solving certain continued fractions numerically. These solutions are thereafter utilised to further demonstrate that there do exist finite perturbations of the AdS spiky strings. Our results therefore establish that the spiky string configurations in AdS3 are indeed stable against small fluctuations. Comments on future possibilities of work are included in conclusion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا