ﻻ يوجد ملخص باللغة العربية
We report the production of ultracold heteronuclear Cs$^*$Yb molecules through one-photon photoassociation applied to an ultracold atomic mixture of Cs and Yb confined in an optical dipole trap. We use trap-loss spectroscopy to detect molecular states below the Cs($^{2}P_{1/2}$) + Yb($^{1}S_{0}$) asymptote. For $^{133}$Cs$^{174}$Yb, we observe 13 rovibrational states with binding energies up to $sim$500 GHz. For each rovibrational state we observe two resonances associated with the Cs hyperfine structure and show that the hyperfine splitting in the diatomic molecule decreases for more deeply bound states. In addition, we produce ultracold fermionic $^{133}$Cs$^{173}$Yb and bosonic $^{133}$Cs$^{172}$Yb and $^{133}$Cs$^{170}$Yb molecules. From mass scaling, we determine the number of bound states supported by the 2(1/2) excited-state potential to be 154 or 155.
The formation of ultracold metastable RbCs molecules is observed in a double species magneto-optical trap through photoassociation below the ^85Rb(5S_1/2)+^133Cs(6P_3/2) dissociation limit followed by spontaneous emission. The molecules are detected
Ultracold metastable RbCs molecules are observed in a double species MOT through photoassociation near the Rb(5S$_{1/2}$)+Cs(6P$_{3/2}$) dissociation limit followed by radiative stabilization. The molecules are formed in their lowest triplet electron
We recently reported the formation of ultracold LiCs molecules in the rovibrational ground state X1Sigma+,v=0,J=0 [J. Deiglmayr et al., PRL 101, 133004 (2008)]. Here we discuss details of the experimental setup and present a thorough analysis of the
We report the observation of microwave coherent control of rotational states of ultracold $^{85}$Rb$^{133}$Cs molecules formed in their vibronic ground state by short-range photoassociation. Molecules are formed in the single rotational state $X(v=0,
We report on the observation of blue-detuned photoassociation in Rb2, in which vibrational levels are energetically above the corresponding excited atomic asymptote. 85Rb atoms in a MOT were photoassociated at short internuclear distances to levels o