ﻻ يوجد ملخص باللغة العربية
We report on the observation of blue-detuned photoassociation in Rb2, in which vibrational levels are energetically above the corresponding excited atomic asymptote. 85Rb atoms in a MOT were photoassociated at short internuclear distances to levels of the (1)3Pi g state at a rate of approximately 5x10^4 molecules/s. We have observed most of the predicted vibrational levels for all four spin-orbit components 0g+, 0g-, 1g, and 2g, including levels of the 0g+ outer well. These molecules decay to the metastable a3Sigma u+ state, some preferentially to the v=0 level, as we have observed for photoassociation to the v=8 level of the 1g component.
Ultracold metastable RbCs molecules are observed in a double species MOT through photoassociation near the Rb(5S$_{1/2}$)+Cs(6P$_{3/2}$) dissociation limit followed by radiative stabilization. The molecules are formed in their lowest triplet electron
The formation of ultracold metastable RbCs molecules is observed in a double species magneto-optical trap through photoassociation below the ^85Rb(5S_1/2)+^133Cs(6P_3/2) dissociation limit followed by spontaneous emission. The molecules are detected
We recently reported the formation of ultracold LiCs molecules in the rovibrational ground state X1Sigma+,v=0,J=0 [J. Deiglmayr et al., PRL 101, 133004 (2008)]. Here we discuss details of the experimental setup and present a thorough analysis of the
We report the production of ultracold heteronuclear Cs$^*$Yb molecules through one-photon photoassociation applied to an ultracold atomic mixture of Cs and Yb confined in an optical dipole trap. We use trap-loss spectroscopy to detect molecular state
In this work we discuss the rotational structure of Rydberg molecules. We calculate the complete wave function in a laboratory fixed frame and derive the transition matrix elements for the pho- toassociation of free ground state atoms. We discuss the