ترغب بنشر مسار تعليمي؟ اضغط هنا

Alquist: The Alexa Prize Socialbot

46   0   0.0 ( 0 )
 نشر من قبل Jan Pichl
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper describes a new open domain dialogue system Alquist developed as part of the Alexa Prize competition for the Amazon Echo line of products. The Alquist dialogue system is designed to conduct a coherent and engaging conversation on popular topics. We are presenting a hybrid system combining several machine learning and rule based approaches. We discuss and describe the Alquist pipeline, data acquisition, and processing, dialogue manager, NLG, knowledge aggregation and hierarchy of sub-dialogs. We present some of the experimental results.



قيم البحث

اقرأ أيضاً

This paper presents the second version of the dialogue system named Alquist competing in Amazon Alexa Prize 2018. We introduce a system leveraging ontology-based topic structure called topic nodes. Each of the nodes consists of several sub-dialogues, and each sub-dialogue has its own LSTM-based model for dialogue management. The sub-dialogues can be triggered according to the topic hierarchy or a user intent which allows the bot to create a unique experience during each session.
The third version of the open-domain dialogue system Alquist developed within the Alexa Prize 2020 competition is designed to conduct coherent and engaging conversations on popular topics. The main novel contribution is the introduction of a system l everaging an innovative approach based on a conversational knowledge graph and adjacency pairs. The conversational knowledge graph allows the system to utilize knowledge expressed during the dialogue in consequent turns and across conversations. Dialogue adjacency pairs divide the conversation into small conversational structures, which can be combined and allow the system to react to a wide range of user inputs flexibly. We discuss and describe Alquists pipeline, data acquisition and processing, dialogue manager, NLG, knowledge aggregation, and a hierarchy of adjacency pairs. We present the experimental results of the individual parts of the system.
The open domain-dialogue system Alquist has a goal to conduct a coherent and engaging conversation that can be considered as one of the benchmarks of social intelligence. The fourth version of the system, developed within the Alexa Prize Socialbot Gr and Challenge 4, brings two main innovations. The first addresses coherence, and the second addresses the engagingness of the conversation. For innovations regarding coherence, we propose a novel hybrid approach combining hand-designed responses and a generative model. The proposed approach utilizes hand-designed dialogues, out-of-domain detection, and a neural response generator. Hand-designed dialogues walk the user through high-quality conversational flows. The out-of-domain detection recognizes that the user diverges from the predefined flow and prevents the system from producing a scripted response that might not make sense for unexpected user input. Finally, the neural response generator generates a response based on the context of the dialogue that correctly reacts to the unexpected user input and returns the dialogue to the boundaries of hand-designed dialogues. The innovations for engagement that we propose are mostly inspired by the famous exploration-exploitation dilemma. To conduct an engaging conversation with the dialogue partners, one has to learn their preferences and interests -- exploration. Moreover, to engage the partner, we have to utilize the knowledge we have already learned -- exploitation. In this work, we present the principles and inner workings of individual components of the open-domain dialogue system Alquist developed within the Alexa Prize Socialbot Grand Challenge 4 and the experiments we have conducted to evaluate them.
Traditional goal-oriented dialogue systems rely on various components such as natural language understanding, dialogue state tracking, policy learning and response generation. Training each component requires annotations which are hard to obtain for every new domain, limiting scalability of such systems. Similarly, rule-based dialogue systems require extensive writing and maintenance of rules and do not scale either. End-to-End dialogue systems, on the other hand, do not require module-specific annotations but need a large amount of data for training. To overcome these problems, in this demo, we present Alexa Conversations, a new approach for building goal-oriented dialogue systems that is scalable, extensible as well as data efficient. The components of this system are trained in a data-driven manner, but instead of collecting annotated conversations for training, we generate them using a novel dialogue simulator based on a few seed dialogues and specifications of APIs and entities provided by the developer. Our approach provides out-of-the-box support for natural conversational phenomena like entity sharing across turns or users changing their mind during conversation without requiring developers to provide any such dialogue flows. We exemplify our approach using a simple pizza ordering task and showcase its value in reducing the developer burden for creating a robust experience. Finally, we evaluate our system using a typical movie ticket booking task and show that the dialogue simulator is an essential component of the system that leads to over $50%$ improvement in turn-level action signature prediction accuracy.
Work of Lev Landau had a profound impact on the physics in 20th century. Landau had created the paradigms that had framed the conversations on the outstanding problems in physics for decades. He has laid the foundations for our understanding of quant um matter such as superfluidity, superconductivity and the theory of Fermi Liquid. Here we present sampled Nobel Archive data on the winning nomination that led to the Nobel Prize in Physics in 1962.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا